满分5 >
初中数学试题 >
下列计算正确的是( ) A.3x-2x=1 B.x•x=x2 C.2x+2x=2...
下列计算正确的是( )
A.3x-2x=1
B.x•x=x2
C.2x+2x=2x2
D.(-a3)2=-a4
考点分析:
相关试题推荐
3的倒数的相反数是( )
A.-3
B.3
C.
D.
查看答案
如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.
(1)请用含t的代数式表示出点D的坐标;
(2)求t为何值时,△DPA的面积最大,最大为多少?
(3)在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求t的值.若不能,请说明理由;
(4)请直接写出随着点P的运动,点D运动路线的长.
查看答案
在△ABC中,AB、BC、AC三边的长分别为
、
、
,求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.
(1)△ABC的面积为:______;
(2)若△DEF三边的长分别为
、
、
,请在图1的正方形网格中画出相应的△DEF,并利用构图法求出它的面积;
(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13,10,17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积.
查看答案
如图,在平面直角坐标系中,二次函数y=x
2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.
(1)求这个二次函数的表达式.
(2)当点P运动到什么位置时,四边形ABPC为等腰梯形,直接写出此时P点的坐标:P(______,______).
(3)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
查看答案
甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶,甲车先到达B地,停留1小时后按原路以另一速度匀速返回,直到两车相遇,乙车的速度为每小时120千米,下图是两车之间的距离y(千米)与乙车行驶时间x(小时)之间的函数图象.
(1)请将图中的______内填上正确的值,并直接写出甲车从A到B的行驶速度.
(2)求从甲车返回到乙车相遇过程中y与x之间的函数关系式,并写出自变量x的取值范围.
(3)求出甲车返回时行驶速度及A、B两地的距离.
查看答案