满分5 >
初中数学试题 >
已知-4xay+x2yb=-3x2y,则a+b的值为( ) A.1 B.2 C....
已知-4xay+x2yb=-3x2y,则a+b的值为( )
A.1
B.2
C.3
D.4
考点分析:
相关试题推荐
已知,如图,AD与BC相交于点O,AB∥CD,如果∠B=20°,∠D=40°,那么∠BOD为( )
A.40°
B.50°
C.60°
D.70°
查看答案
06年,我市深入实施环境污染整治,某经济开发区的40家化工企业中已关停,整改32家,每年排放的污水减少了167 000吨.将167 000用科学记数法表示为( )
A.167×10
3B.16.7×10
4C.1.67×10
5D.0.167×10
6
查看答案
计算:
=( )
A.5
B.-1
C.-3
D.3
查看答案
如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.
(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;
(2)求m与n的函数关系式,直接写出自变量n的取值范围;
(3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD
2+CE
2=DE
2;
(4)在旋转过程中,(3)中的等量关系BD
2+CE
2=DE
2是否始终成立?若成立,请证明;若不成立,请说明理由.
查看答案
几何模型:
条件:如下图,A、B是直线l同旁的两个定点.
问题:在直线l上确定一点P,使PA+PB的值最小.
方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).
模型应用:
(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是______;
(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;
(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.
查看答案