满分5 > 初中数学试题 >

如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴...

如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=3.
(1)在AB边上取一点D,将纸片沿OD翻折,使点A落在BC边上的点E处,求点D,E的坐标;
(2)若过点D,E的抛物线与x轴相交于点F(-5,0),求抛物线的解析式和对称轴方程;
(3)若(2)中的抛物线与y轴交于点H,在抛物线上是否存在点P,使△PFH的内心在坐标轴上?若存在,求出点P的坐标,若不存在,请说明理由.
(4)若(2)中的抛物线与y轴相交于点H,点Q在线段OD上移动,作直线HQ,当点Q移动到什么位置时,O,D两点到直线HQ的距离之和最大?请直接写出此时点Q的坐标及直线HQ的解析式.
manfen5.com 满分网
(1)本题可根据折叠的性质来求解.根据折叠的性质可得出OE=OA,可在直角三角形OCE中,用勾股定理求出CE的长,也就求出了E点的坐标.在直角三角形DBE中,还是根据折叠的性质,DA=DE,DB=3-DE,而BE可根据OA和CE的长求出,因此根据勾股定理即可求出DE即AD的长,也就得出了D点的坐标. (2)根据D、E、F的坐标,用待定系数法即可求出抛物线的解析式,进而可求出其对称轴的方程. (3)当内心在y轴上时,根据三角形内心的性质可知:y轴正好是∠PHF的角平分线,那么∠PHO=∠FHO=45°,设PH与x轴的交点为M,易知三角形OMH为等腰直角三角形,由此可求出M的坐标,进而可求出直线PH的解析式,联立抛物线的解析式即可求出P点的坐标. 当内心在x轴上时,解法同上. (4)根据“直线外一点与直线上各点连接的所有线段中,垂线段最短”可知,当直线HQ⊥OD时,O,D两点到直线HQ的距离之和最大,此时点Q为垂足.利用三角形相似可求得点Q的坐标. 【解析】 (1)依题意,OE=OA=5, 在Rt△OCE中,CE2=OE2-OC2=52-32=42, ∴CE=4. 设点D的坐标为(5,y), 则AD=DE=y,BD=3-y,BE=5-4=1. 在Rt△BED中,ED2=EB2+BD2, ∴y2=12+(3-y)2, 解得y=, ∴点D,E的坐标分别为(5,),(4,3). (2)设抛物线的解析式为y=ax2+bx+c, ∵抛物线过点D(5,),E(4,3),F(-5,0), ∴, 解得, ∴抛物线的解析式为y=-x2+x+5. 对称轴的方程为. ∴对称轴的方程为x=. (3)存在这样的P点,使△PFH的内心在坐标轴上. ①若△PFH的内心在y轴上,设直线PH与x轴相交于点M, ∵∠FHO=∠MHO,HO⊥FM, ∴FO=MO, ∴点M的坐标为(5,0). ∴直线PH的解析式为y=-x+5. 解方程组, 得,. ∴点P的坐标为(7,-2). ②若△PFH的内心在x轴上,设直线PF与y轴相交于点N, ∵∠HFO=∠NFO,FO⊥HN, ∴HO=NO, ∴点N的坐标为(0,-5), ∴直线FN的解析式为y=-x-5. 解方程组, 得, . ∴点P的坐标为(12,-17). 综合①②可知点P的坐标为(7,-2)或(12,-17). (4)(附加题)点Q的坐标为(,), 直线HQ的解析式为y=-3x+5.
复制答案
考点分析:
相关试题推荐
(北师大版)某公司以每吨200元的价格购进某种矿石原料300吨,用于生产甲、乙两种产品.生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表:
煤的价格为400元/吨.生产1吨甲产品除原料费用外,还需其它费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其它费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完.设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.
(1)写出m与x之间的关系式;
(2)写出y与x之间的函数表达式(不要求写出自变量的范围);
(3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大,最大利润是多少?
产品
资源
矿石(t)104
煤(t)48

查看答案
在一块长16m、宽12m的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半,下面分别是小明和小颖的设计方案.
manfen5.com 满分网
小明说:我的设计方案如图1,其中花园四周小路的宽度相等.通过解方程,我得到小路的宽为2m或12m.
小颖说:我的设计方案如图2,其中花园中每个角上的扇形相同.
(1)你认为小明的结果对吗?请说明理由.
(2)请你帮助小颖求出图中的x(精确到0.1m).
(3)你还有其他的设计方案吗?请在下边的矩形中画出你的设计草图,并加以说明.
manfen5.com 满分网
查看答案
如图,在△ABC中,点E是内心,延长AE交△ABC的外接圆于点D,连接BD、CD、CE,且∠BDA=60°.
(1)求证:△BDE是等边三角形.
(2)若∠BDC=120°,猜想四边形BDCE是怎样的四边形,并证明你的猜想.

manfen5.com 满分网 查看答案
某区对一次模拟考试的4000名学生的数学成绩进行抽样调查.抽取了部分学生的数学成绩进行统计,绘制成频数统计图如下(注:本次考试学生的卷面成绩都是整数,例如左边第一个矩形表示成绩从60分到71分的人数).已知从左到右五个小组的频数之比依次是6:7:11:4:2,第五小组的频数为40.问:
(1)本次调查共抽取了多少名学生的成绩?
(2)若大于或等于96分为优秀,那么抽取的学生中,优秀的人数占所抽取的学生数的百分之几?
(3)若大于或等于72分为及格,那么4000名学生中,及格的人数大约是多少?

manfen5.com 满分网 查看答案
如图,已知:梯形ABCD中,AD∥BC,E为AC的中点,连接DE并延长交BC于点F,连接AF.
(1)求证:AD=CF;
(2)在原有条件不变的情况下,请你再添加一个条件(不再增添辅助线),使四边形AFCD成为菱形,并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.