满分5 > 初中数学试题 >

如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿A...

如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是( )
manfen5.com 满分网
A.1
B.2
C.3
D.4
根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面积比较即可. 【解析】 ①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°, ∴Rt△ABG≌Rt△AFG(HL); ②正确.因为:EF=DE=CD=2,设BG=FG=x,则CG=6-x.在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,解得x=3.所以BG=3=6-3=GC; ③正确.∵CG=BG,BG=GF, ∴CG=GF, ∴△FGC是等腰三角形,∠GFC=∠GCF. 又∵Rt△ABG≌Rt△AFG; ∴∠AGB=∠AGF,∠AGB+∠AGF=180°-∠FGC=∠GFC+∠GCF, ∴∠AGB=∠AGF=∠GFC=∠GCF, ∴AG∥CF; ④错误. ∵S△GCE=GC•CE=×3×4=6 ∵GF=3,EF=2,△GFC和△FCE等高, ∴S△GFC:S△FCE=3:2, ∴S△GFC=×6=≠3. 故不正确. 故选C.
复制答案
考点分析:
相关试题推荐
如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为( )
manfen5.com 满分网
A.x<-2
B.-2<x<-1
C.-2<x<0
D.-1<x<0
查看答案
在下列命题中,正确的是( )
A.一组对边平行的四边形是平行四边形
B.有一个角是直角的四边形是矩形
C.有一组邻边相等的平行四边形是菱形
D.对角线互相垂直平分的四边形是正方形
查看答案
如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的正弦值为( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知两圆的半径分别为3cm和2cm,圆心距为5cm,则两圆的位置关系是( )
A.外离
B.外切
C.相交
D.内切
查看答案
某中学篮球队12名队员的年龄情况如下:
年龄(单位:岁)1415161718
人数14322
则这个队队员年龄的众数和中位数分别是( )
A.15,16
B.15,15
C.15,15.5
D.16,15
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.