满分5 > 初中数学试题 >

在△ABC中,∠BAC=45°,AD⊥BC于D,将△ABD沿AB所在的直线折叠,...

在△ABC中,∠BAC=45°,AD⊥BC于D,将△ABD沿AB所在的直线折叠,使点D落在点E处;将△ACD沿AC所在的直线折叠,使点D落在点F处,分别延长EB、FC使其交于点M.
(1)判断四边形AEMF的形状,并给予证明;
(2)若BD=2,CD=3,试求四边形AEMF的面积.

manfen5.com 满分网
(1)根据折叠的性质可得到∠1=∠3,∠2=∠4,AE=AE,由∠BAC=45°可判断出∠EAF的度数,进而可判断出四边形AEMF的形状; (2)由图形翻折变换的性质可知,BE=BD,CF=CD,设正方形AEMF的边长是x,在Rt△BMC中利用勾股定理可求出x的值,由正方形的面积公式即可求出其面积. 【解析】 (1)∵AD⊥BC△AEB是由△ADB折叠所得, ∴∠1=∠3,∠E=∠ADB=90°,BE=BD,AE=AD 又∵△AFC是由△ADC折叠所得 ∴∠2=∠4,∠F=∠ADC=90°,FC=CD,AF=AD ∴AE=AF 又∵∠1+∠2=45°, ∴∠3+∠4=45°, ∴∠EAF=90°, ∴四边形AEMF是正方形. (2)根据题意知:BE=BD,CF=CD 设正方形AEMF的边长是x, ∴BM=x-2;   CM=x-3 在Rt△BMC中,由勾股定理得: BC2=CM2+BM2,即(2+3)2=(x-3)2+(x-2)2, 解得x=6或x=-1(舍去), ∴EM=6, ∴S正方形AEMF=EM2=62=36. 故答案为:正方形,36.
复制答案
考点分析:
相关试题推荐
为了迎接市排球运动会,市排协准备新购一批排球.张会长问器材保管员:“我们现在还有多少个排球?”,保管员说:“两年前购进100个新排球,由于训练损坏,现在还有81个球.”
(1)假设这两年平均每年的损坏率相同,求损坏率.
(2)张会长说:“我们协会有奇数个训练队,如果新购进的排球,每队分得8个球,球正好都分完;如果每队分的9个球,那么有一个队分得的球不足6个,但超过2个.”那么市排协准备新购排球以及该协会有多少个训练队?
(3)张会长准备去买第(2)题中求的排球数,某体育用品商店提供如下信息:
信息一:可供选择的排球有A、B、C三种型号,但要求购买A、B型号数量相等.
信息二:如表:
型号每个型号批发单价(元)每年每个型号排球的损坏率
A300.2
B200.3
C500.1
设购买A、C型号排球分别为a个、b个,你能帮张会长制定一个购买方案吗?要求总费用w(元)要最省,而且要使这批排球两年后没有损坏的个数不少于27个.
查看答案
如图,已知Rt△AOB在平面直角坐标系中,∠AOB=90°,∠BAO=30°,且A的坐标为(3,0),⊙C的圆心坐标为(-1,0),半径为1,若D是⊙C上的一个动点,线段DA与y轴交与点E.求:
(1)过点A、B、C的二次函数关系式;
(2)求△ABE面积的最大值.

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AD∥BC,∠D=90°,BE⊥AC,E为垂足,AC=BC.
(1)求证:CD=BE;
(2)若AD=3,DC=4,求AE.

manfen5.com 满分网 查看答案
联合国规定每年的6月5日是“世界环境日”,为配合今年的“世界环境日”宣传活动,某校课外活动小组对全校师生开展了以“爱护环境,从我做起”为主题的问卷调查活动,将调查结果分析整理后,制成了上面的两个统计图.
其中:A:能将垃圾放到规定的地方,而且还会考虑垃圾的分类;
B:能将垃圾放到规定的地方,但不会考虑垃圾的分类;
C:偶尔会将垃圾放到规定的地方;
D:随手乱扔垃圾.
manfen5.com 满分网
根据以上信息回答下列问题:
(1)该校课外活动小组共调查了多少人?并补全上面的条形统计图;
(2)如果该校共有师生2400人,那么随手乱扔垃圾的约有多少人?
查看答案
小莉的爸爸买了去看中国篮球职业联赛总决赛的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.
(1)请用列表的方法求小莉去看中国篮球职业联赛总决赛的概率;
(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.