满分5 > 初中数学试题 >

如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第...

如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A⇒B⇒C⇒D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.
(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;
(2)求正方形边长及顶点C的坐标;
(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;
(4)如果点P、Q保持原速度不变,当点P沿A⇒B⇒C⇒D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由.

manfen5.com 满分网
(1)根据题意,观察图象可得x与t的关系,进而可得答案; (2)过点B作BF⊥y轴于点F,BE⊥x轴于点E,易得BF=8,OF=BE=4,进而在Rt△AFB中,由勾股定理可得AB=10;进一步易得△ABF≌△BCH,再根据BH与OG的关系,可得C的坐标; (3)过点P作PM⊥y轴于点M,PN⊥x轴于点N,易得△APM∽△ABF;进而可得对应边的比例关系,解可得AM、PM与t的关系,由三角形面积公式,可得答案. (4)此题需要分类讨论:当P在BC上时,求得t的值;当P在CD上时,求得t的值;即当t=时;当P在BA上时,求得t的值. 【解析】 (1)Q(1,0)(1分)Q的图象是一条直线,且过点(11,0). 且点P运动速度每秒钟1个单位长度.(2分) (2)过点B作BF⊥y轴于点F,BE⊥x轴于点E,则BF=8,OF=BE=4. ∴AF=10-4=6. 在Rt△AFB中,AB==10,(3分) 过点C作CG⊥x轴于点G,与FB的延长线交于点H. ∵∠ABC=90°,AB=BC, ∴△ABF≌△BCH. ∴BH=AF=6 CH=BF=8. ∴OG=FH=8+6=14,CG=8+4=12. ∴所求C点的坐标为(14,12).(4分) (3)过点P作PM⊥y轴于点M,PN⊥x轴于点N, 则△APM∽△ABF. ∴, ∴. ∴AM=t,PM=t, ∴PN=OM=10-t,ON=PM=t. 设△OPQ的面积为S(平方单位), ∴S=×(10-t)(1+t)=5+t-t2(0≤t≤10),(5分) 说明:未注明自变量的取值范围不扣分. ∵a=-, ∴当t=-=时,△OPQ的面积最大.(6分) 此时P的坐标为(,).(7分) (4)OP与PQ相等,组成等腰三角形,即当P点的横坐标等于Q点的横坐标的一半时, 当P在BC上时,8+(t-10)=(t+1),解得:t=-15(舍去) 当P在CD上时,14-(t-20)=(t+1),解得:t=, 即当t=时,OP与PQ相等. 当P在BA上时,t=,OP与PQ相等,(9分) ∴当t=或t=时,OP与PQ相等.
复制答案
考点分析:
相关试题推荐
在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.
(1)在图1中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;
(2)当三角尺沿AC方向平移到图2所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想;
(3)当三角尺在(2)的基础上沿AC方向继续平移到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立(不用说明理由).
manfen5.com 满分网
查看答案
在△ABC中,∠BAC=45°,AD⊥BC于D,将△ABD沿AB所在的直线折叠,使点D落在点E处;将△ACD沿AC所在的直线折叠,使点D落在点F处,分别延长EB、FC使其交于点M.
(1)判断四边形AEMF的形状,并给予证明;
(2)若BD=2,CD=3,试求四边形AEMF的面积.

manfen5.com 满分网 查看答案
为了迎接市排球运动会,市排协准备新购一批排球.张会长问器材保管员:“我们现在还有多少个排球?”,保管员说:“两年前购进100个新排球,由于训练损坏,现在还有81个球.”
(1)假设这两年平均每年的损坏率相同,求损坏率.
(2)张会长说:“我们协会有奇数个训练队,如果新购进的排球,每队分得8个球,球正好都分完;如果每队分的9个球,那么有一个队分得的球不足6个,但超过2个.”那么市排协准备新购排球以及该协会有多少个训练队?
(3)张会长准备去买第(2)题中求的排球数,某体育用品商店提供如下信息:
信息一:可供选择的排球有A、B、C三种型号,但要求购买A、B型号数量相等.
信息二:如表:
型号每个型号批发单价(元)每年每个型号排球的损坏率
A300.2
B200.3
C500.1
设购买A、C型号排球分别为a个、b个,你能帮张会长制定一个购买方案吗?要求总费用w(元)要最省,而且要使这批排球两年后没有损坏的个数不少于27个.
查看答案
如图,已知Rt△AOB在平面直角坐标系中,∠AOB=90°,∠BAO=30°,且A的坐标为(3,0),⊙C的圆心坐标为(-1,0),半径为1,若D是⊙C上的一个动点,线段DA与y轴交与点E.求:
(1)过点A、B、C的二次函数关系式;
(2)求△ABE面积的最大值.

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AD∥BC,∠D=90°,BE⊥AC,E为垂足,AC=BC.
(1)求证:CD=BE;
(2)若AD=3,DC=4,求AE.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.