已知:二次函数y=ax
2-2x+c的图象与x于A、B,A在点B的左侧),与y轴交于点C,对称轴是直线x=1,平移一个单位后经过坐标原点O
(1)求这个二次函数的解析式;
(2)直线
交y轴于D点,E为抛物线顶点.若∠DBC=α,∠CBE=β,求α-β的值;
(3)在(2)问的前提下,P为抛物线对称轴上一点,且满足PA=PC,在y轴右侧的抛物线上是否存在点M,使得△BDM的面积等于PA
2?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案
为推进节能减排,发展低碳经济,深化“宜居重庆”的建设,我市某“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格在200元的基础上每增加10元,年销售量将减少1万件.设销售单价为x元),年销售量为y万件),年获利为w万元).
(年获利=年销售额-生产成本-节电投资)
(1)直接写出y与x间的函数关系式;
(2)求第一年的年获利w与x函数关系式,并说明投资的第一年,该“用电大户”是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?
(3)若该“用电大户”把“草甘磷”的销售单价定在超过100元,但不超过200元的范围内,并希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利为1842万元,请你确定此时销售单价.在此情况下,要使产品销售量最大,销售单价应定为多少元?
查看答案