满分5 > 初中数学试题 >

如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆...

如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.
(1)求证:△ODM∽△MCN;
(2)设DM=x,求OA的长(用含x的代数式表示);
(3)在点O的运动过程中,设△CMN的周长为P,试用含x的代数式表示P,你能发现怎样的结论?

manfen5.com 满分网
(1)依题意可得∠OMC=∠MNC,然后可证得△ODM∽△MCN. (2)设DM=x,OA=OM=R,OD=AD-OA=8-R,根据勾股定理求出OA的值. (3)由1可求证△ODM∽△MCN,利用线段比求出CN,MN的值.然后可求出△CMN的周长等于CM+CN+MN,把各个线段消去代入可求出周长. (1)证明:∵MN切⊙O于点M, ∴∠OMN=90°;(1分) ∵∠OMD+∠CMN=90°,∠CMN+∠CNM=90°; ∴∠OMD=∠MNC;(2分) 又∵∠D=∠C=90°; ∴△ODM∽△MCN,(3分) (2)【解析】 在Rt△ODM中,DM=x,设OA=OM=R; ∴OD=AD-OA=8-R,(4分) 由勾股定理得:(8-R)2+x2=R2,(5分) ∴64-16R+R2+x2=R2, ∴;(6分) (3)解法一:∵CM=CD-DM=8-x, 又∵, 且有△ODM∽△MCN, ∴, ∴代入得到;(7分) 同理, ∴代入得到;(8分) ∴△CMN的周长为P==(8-x)+(x+8)=16.(9分) 发现:在点O的运动过程中,△CMN的周长P始终为16,是一个定值.(10分) 解法二:在Rt△ODM中,, 设△ODM的周长P′=;(7分) 而△MCN∽△ODM,且相似比;(8分) ∵, ∴△MCN的周长为P=.(9分) 发现:在点O的运动过程中,△CMN的周长P始终为16,是一个定值.(10分)
复制答案
考点分析:
相关试题推荐
在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
2008年春节前夕,南方地区遭遇罕见的低温雨雪冰冻天气,赣南脐橙受灾滞销.为了减少果农的损失,政府部门出台了相关补贴政策:采取每千克补贴0.2元的办法补偿果农.
下图是“绿荫”果园受灾期间政府补助前、后脐橙销售总收入y(万元)与销售量x(吨)的关系图.请结合图象回答以下问题:
(1)在出台该项优惠政策前,脐橙的售价为每千克多少元?
(2)出台该项优惠政策后,“绿荫”果园将剩余脐橙按原售价打九折赶紧全部销完,加上政府补贴共收入11.7万元,求果园共销售了多少吨脐橙?
(3)①求出台该项优惠政策后y与x的函数关系式;②去年“绿荫”果园销售30吨,总收入为10.25万元;若按今年的销售方式,则至少要销售多少吨脐橙?总收入能达到去年水平.

manfen5.com 满分网 查看答案
如图某幢大楼顶部有广告牌CD.张老师目高MA为1.60米,他站立在离大楼45米的A处测得大楼顶端点D的仰角为30°;接着他向大楼前进14米、站在点B处,测得广告牌顶端点C的仰角为45°.(取manfen5.com 满分网,计算结果保留一位小数)
(1)求这幢大楼的高DH;
(2)求这块广告牌CD的高度.

manfen5.com 满分网 查看答案
如图,在直角坐标系xOy中,每个网格的边长都是单位1,圆心为M(-4,0)的⊙M被y轴截得的弦长BC=6.
(1)求⊙M的半径长;
(2)把⊙M向下平移6个单位,再向右平移8个单位得到⊙N;请画出⊙N,观察图形写出点N的坐标,并判断⊙M与⊙N的位置关系,说明理由;
(3)画出一个“以点D(6,0)为位似中心,将⊙N缩小为原来的manfen5.com 满分网”的⊙P.
manfen5.com 满分网
查看答案
如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM的中点.
(1)在不添加线段的前提下,图中有哪几对全等三角形?请直接写出结论;
(2)判断并证明四边形MENF是何种特殊的四边形;
(3)当等腰梯形ABCD的高h与底边BC满足怎样的数量关系时,四边形MENF是正方形?(直接写出结论,不需要证明).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.