已知二次函数y=mx
2+(m-3)x-3(m>0)的图象如图所示.
(1)这条抛物线与x轴交于两点A(x
1,0)、B(x
2,0)(x
1<x
2),与y轴交于点C,且AB=4,⊙M过A、B、C三点,求扇形MAC的面积;
(2)在(1)的条件下,抛物线上是否存在点P,使△PBD(PD垂直于x轴,垂足为D)被直线BC分成面积比为1:2的两部分?若存在,请求出P点坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C作CE垂直于BD或BD的延长线,垂足为E,如图.
(1)若BD是AC的中线,求
的值;
(2)若BD是∠ABC的角平分线,求
的值;
(3)结合(1)、(2),试推断
的取值范围(直接写出结论,不必证明),并探究
的值能小于
吗?若能,求出满足条件的D点的位置;若不能,说明理由.
查看答案
在十月份海鱼大量上市时,某公司按市场价格20元/千克收购了某种鱼10000千克存放入冷库中,据预测,该鱼的市场价格将以每天每千克上涨1元;但冷藏存放这批鱼时每天需要支出各种费用合计3100元,而且这类鱼在冷库中最多保存160天,同时,平均每天有30千克的鱼损坏不能出售.
(1)设x天后每千克该鱼的市场价格为y元,试写出y与x之间的函数关系式.
(2)若存放x天后,将这批鱼一次性出售,设这批鱼的销售总额为P元,试写出P与x之间的函数关系式.
(3)该公司将这批鱼存放多少天后出售可获得最大利润W元?
(利润=销售总额-收购成本-各种费用)
查看答案
如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.
(1)求证:AB=AC;(2)求证:DE为⊙O的切线.
查看答案
(1)已知关于x的方程(m
2-1)x
2-3(3m-1)x+18=0有两个正整数根(m是整数),试求方程的解.
(2)甲乙两人在玩转盘游戏时,把转盘A、B分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定,转动两个转盘停止后,指针必须指到某一数字,否则重转.
(a)请用树状图或列表法列出所有可能的结果;
(b)若指针所指的两个数字都是(1)中方程的解时,则甲获胜;若指针所指的两个数字都不是(1)中方程的解时,则乙获胜,问他们两人谁获胜的概率大?请分析说明.
查看答案
如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.观察并猜想AP与CQ之间的大小关系,并证明你的结论.
查看答案