满分5 >
初中数学试题 >
在实数0,-,,|-2|中,最小的是( ) A. B.- C.0 D.|-2|
在实数0,-
,
,|-2|中,最小的是( )
A.
B.-
C.0
D.|-2|
考点分析:
相关试题推荐
如图,二次函数y=ax
2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴相交于点C.连接AC,BC,A(-3,0),C(0,
),且当x=-4和x=2时二次函数的函数值y相等.
(1)求抛物线的解析式;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.
①当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
②抛物线的对称轴上是否存在点Q,使得以B、N、Q为顶点的三角形与△A0C相似?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.
③当运动时间为t秒时,连接MN,将△BMN沿MN翻折,得到△PMN.并记△PMN与△AOC的重叠部分的面积为S.求S与t的函数关系式.
查看答案
已知正方形ABCD的边长为6cm,点E是射线BC上的一个动点,连接AE交射线DC于点F,将△ABE沿直线AE翻折,点B落在点B′处.
(1)当
=1时,CF=______cm,
(2)当
=2时,求sin∠DAB′的值;
(3)当
=x时(点C与点E不重合),请写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式,(只要写出结论,不要解题过程).
查看答案
如图1和2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网的底部重合时,继续同样的速度向右平移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.
(1)如图1,当Rt△ABC向下平移到Rt△A
1B
1C
1的位置时,请你在网格中画出Rt△A
1B
1C
1关于直线QN成轴对称的图形;
(2)如图2,在Rt△ABC向下平移的过程中,请你求出y与x的函数关系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?
(3)在Rt△ABC向右平移的过程中,请你说明当x取何值时,y取得最大值和最小值?最大值和最值分别是多少?为什么?(说明:在(3)中,将视你解答方法的创新程度,给予1~4分的加分)
查看答案
腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C,利用三角板测得雕塑顶端A点的仰角为30°,底部B点的俯角为45°,小华在五楼找到一点D,利用三角板测得A点的俯角为60°(如图②).若已知CD为10米,请求出雕塑AB的高度.(结果精确到0.1米,参考数据
).
查看答案
甲、乙两校参加市教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.
(1)在图1中,“7分”所在扇形的圆心角等于
度.
(2)请你将图2的统计图补充完整.
(3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.
(4)如果该教育局要组织8人的代表队参加省级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?
查看答案