满分5 > 初中数学试题 >

如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连...

如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:
①△AED≌△DFB;②S四边形BCDG=manfen5.com 满分网CG2;③若AF=2DF,则BG=6GF.
其中正确的结论( )
manfen5.com 满分网
A.只有①②
B.只有①③
C.只有②③
D.①②③
①易证△ABD为等边三角形,根据“SAS”证明△AED≌△DFB; ②证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S四边形BCDG=S四边形CMGN,易求后者的面积. ③过点F作FP∥AE于P点. 根据题意有FP:AE=DF:DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF. 【解析】 ①∵ABCD为菱形,∴AB=AD. ∵AB=BD,∴△ABD为等边三角形. ∴∠A=∠BDF=60°. 又∵AE=DF,AD=BD, ∴△AED≌△DFB; ②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD, 即∠BGD+∠BCD=180°, ∴点B、C、D、G四点共圆, ∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.    ∴∠BGC=∠DGC=60°. 过点C作CM⊥GB于M,CN⊥GD于N. ∴CM=CN, 则△CBM≌△CDN,(HL) ∴S四边形BCDG=S四边形CMGN. S四边形CMGN=2S△CMG, ∵∠CGM=60°, ∴GM=CG,CM=CG, ∴S四边形CMGN=2S△CMG=2××CG×CG=CG2. ③过点F作FP∥AE于P点.                   ∵AF=2FD, ∴FP:AE=DF:DA=1:3, ∵AE=DF,AB=AD, ∴BE=2AE, ∴FP:BE=1:6=FG:BG, 即 BG=6GF. 故选D.
复制答案
考点分析:
相关试题推荐
如图,已知A、B是反比例函数manfen5.com 满分网(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为( )
manfen5.com 满分网
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
如图,在三角形纸片ABC中,∠ACB=90°,BC=3,AB=6,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CE的长度为( )
manfen5.com 满分网
A.3
B.6
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是( )
manfen5.com 满分网
A.两个外离的圆
B.两个外切的圆
C.两个相交的圆
D.两个内切的圆
查看答案
已知一次函数y=2x+b(b为常数)的图象经过点(3,5),则其图象不经过( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案
我市某一周的最高气温统计如下表:
最高气温(℃)25262728
天  数1123
则这组数据的中位数与众数分别是( )
A.27,28
B.27.5,28
C.28,27
D.26.5,27
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.