满分5 > 初中数学试题 >

两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△...

两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进行如下操作:
(1)如图1,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC、CF、FB,四边形CDBF的形状在不断的变化,它的面积是否变化?如果不变请求出其面积;如果变化,说明理由.
(2)如图2,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.
(3)如图3,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,请你求出sin∠DEA的值.
manfen5.com 满分网
(1)首先利用平移的性质得出CF=AD,CF∥AD,即可得出S梯形CDBF=S△ABC求出即可; (2)首先利用CD∥BF,FC∥BD,得出四边形CDBF是平行四边形,再利用CB⊥DF即可得出四边形CDBF是菱形; (3)利用三角形面积得出DH的长,再利用锐角三角函数关系得出sin∠DEA的值即可. 【解析】 (1)它的面积不变, 理由:过C点作CG⊥AB于G, ∵△DEF沿线段AB向右平移(即D点在线段AB内移动), ∴CF=AD,CF∥AD, 在Rt△AGC中, ∵sin60°=, ∴ ∵AB=2, ∴S梯形CDBF=S△ABC=; (2)四边形CDBF的形状为:菱形, 理由:∵CD∥BF,FC∥BD, ∴四边形CDBF是平行四边形, ∵DF∥AC,∠ACB=90°, ∴CB⊥DF, ∴四边形CDBF是菱形; (3)解法一:过D点作DH⊥AE于H, 则S△ADE= 又S△ADE=, DH===, ∴在Rt△DHE′中,sin∠DEA===; 解法二:∵△ADH∽△ABE, 即: ∴=, ∴sin∠DEA===.
复制答案
考点分析:
相关试题推荐
因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援下图是两水库的蓄水量y(万米3)与时间x(天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题:
(1)甲水库每天的放水量是多少万立方米?
(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米?
(3)求直线AD的解析式.

manfen5.com 满分网 查看答案
如图,已知△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E,连接OE,CD=manfen5.com 满分网,∠ACB=30°.
(1)求证:DE是⊙O的切线;
(2)分别求AB,OE的长;
(3)填空:如果以点E为圆心,r为半径的圆上总存在不同的两点到点O的距离为1,则r的取值范围为______

manfen5.com 满分网 查看答案
如图,四边形OABC是面积为4的正方形,函数manfen5.com 满分网(x>0)的图象经过点B.
(1)求k的值;
(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数manfen5.com 满分网(x>0)的图象交于点E、F,求线段EF所在直线的解析式.

manfen5.com 满分网 查看答案
小明和小颖做掷骰子的游戏,规则如下:
①游戏前,每人选一个数字;
②每次同时掷两枚均匀骰子;
③如果同时掷得的两枚骰子点数之和,与谁所选数字相同,那么谁就获胜.
(1)在下表中列出同时掷两枚均匀骰子所有可能出现的结果:
(2)小明选的数字是5,小颖选的数字是8.如果你也加入游戏,你会选什么数字,使自己获胜的概率比他们大?请说明理由.
  1 3 5
 1      
 2      
 3      
 4      
 5      
 6      

查看答案
为落实素质教育要求,促进学生全面发展,我市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元
(1)求该学校为新增电脑投资的年平均增长率;
(2)从2009年到2011年,该中学三年为新增电脑共投资多少万元?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.