满分5 >
初中数学试题 >
如图所示的图案中,既是轴对称图形又是中心对称图形的是( ) A. B. C. D...
如图所示的图案中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.
考点分析:
相关试题推荐
下列四个数中,最小的数是( )
A.-2
B.-
C.-1
D.0
查看答案
在图形的全等变换中,有旋转变换,翻折(轴对称)变换和平移变换.一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.
(1)第一小组的同学发现,在如图1-1的矩形ABCD中,AC、BD相交于点O,Rt△ADC可以由Rt△ABC经过一种变换得到,请你写出这种变换的过程______.
(2)第二小组同学将矩形纸片ABCD按如下顺序进行操作:对折、展平,得折痕EF(如图2-1);再沿GC折叠,使点B落在EF上的点B′处(如图2-2),这样能得到∠B′GC的大小,你知道∠B′GC的大小是多少吗?请写出求解过程.
(3)第三小组的同学,在一个矩形纸片上按照图3-1的方式剪下△ABC,其中BA=BC,将△ABC沿着直线AC的方向依次进行平移变换,每次均移动AC的长度,得到了△CDE、△EFG和△GHI,如图3-2.已知AH=AI,AC长为a,现以AD、AF和AH为三边构成一个新三角形,已知这个新三角形面积小于15
,请你帮助该小组求出a可能的最大整数值.
(4)探究活动结束后,老师给大家留下了一道探究题:
如图4-1,已知AA′=BB′=CC′=2,∠AOB′=∠BOC′=∠COA′=60°,请利用图形变换探究S
△AOB′+S
△BOC′+S
△COA′与
的大小关系.
查看答案
如图,△ABC内接于⊙O,∠DAB=∠ACB.
(1)判断直线AD与⊙O的位置关系,并说明理由;
(2)若∠DAB=30°,AB=1,求弦AB所对的弧长;
(3)在(2)的条件下,点C在优弧AB上运动,是否存在点C,使点O到弦BC的距离为
?若有,请直接写出AC的长;若没有,请说明理由.
查看答案
小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发x min后距出发点的距离为y m.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M点坐标为(2,0).
(1)A点所表示的实际意义是______;
=______;
(2)求出AB所在直线的函数关系式;
(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?
查看答案
已知二次函数y=-x
2+(m-1)x+m.
(1)证明:不论m取何值,该函数图象与x轴总有公共点;
(2)若该函数的图象与y轴交于点(0,3),求出顶点坐标并画出该函数图象;
(3)在(2)的条件下,观察图象,写出当y<0时x的取值范围.
查看答案