如图1,梯形ABCD中,AD∥BC,AB=AD=DC=5,BC=11.一个动点P从点B出发,以每秒1个单位长度的速度沿线段BC方向运动,过点P作PQ⊥BC,交折线段BA-AD于点Q,以PQ为边向右作正方形PQMN,点N在射线BC上,当Q点到达D点时,运动结束.设点P的运动时间为t秒(t>0).
(1)当正方形PQMN的边MN恰好经过点D时,求运动时间t的值;
(2)在整个运动过程中,设正方形PQMN与△BCD的重合部分面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;
(3)如图2,当点Q在线段AD上运动时,线段PQ与对角线BD交于点E,将△DEQ沿BD翻折,得到△DEF,连接PF.是否存在这样的t,使△PEF是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.
查看答案
某商店在1-10月份的时间销售A、B两种电子产品,已知产品A每个月的售价y(元)与月份x(1≤x≤10,且x为整数)之间的关系可用如下表格表示:
时间x(月) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
售价y(元) | 720 | 360 | 240 | 180 | 144 | 120 | 120 | 120 | 120 | 120 |
已知产品A的进价为140元/件,A产品的销量z(件)与月份x的关系式为z=20x;已知B产品的进价为450元/件,产品B的售价m(元)与月份x(1≤x≤10,且x为整数)之间的函数关系式为m=-20x+750,产品B的销量p(件)与月份x的关系可用如下的图象反映.
已知该商店每个月需固定支出500元的物管杂费以及5个员工的工资,已知员工每人每月的工资为1500元.请结合上述信息解答下列问题:
(1)请观察表格与图象,用我们所学习的一次函数,反比例函数,或者二次函数写出y与x的函数关系式,p与x的函数关系式;
(2)试表示出商店每月销售A、B两种产品的总利润W(将每月必要的开支除去)与月份x的函数关系式,并求出该商店在哪个月时获得最大利润;
(3)为了鼓励员工的积极性,在最后4个月的销售期间商店老板决定奖励员工,除了正常的工资外,每卖一件A产品,每个员工都提成0.75元,每卖一件B产品每个员工都提成10元,这样A产品的销量将每月减少12x件,而B产品的销量将每月增加15x件;请问在第几月时总利润(除去当月所有支出部分)可达到16750元?
(参考数据:
)
查看答案