如图1,已知等边△ABC的边长为1,D、E、F分别是AB、BC、AC边上的点(均不与点A、B、C重合),记△DEF的周长为p.
(1)若D、E、F分别是AB、BC、AC边上的中点,则p=______;
(2)若D、E、F分别是AB、BC、AC边上任意点,则p的取值范围是______.
小亮和小明对第(2)问中的最小值进行了讨论,小亮先提出了自己的想法:将△ABC以AC边为轴翻折一次得△AB
1C,再将△AB
1C以B
1C为轴翻折一次得△A
1B
1C,如图2所示.则由轴对称的性质可知,DF+FE
1+E
1D
2=p,根据两点之间线段最短,可得p≥DD
2.老师听了后说:“你的想法很好,但DD
2的长度会因点D的位置变化而变化,所以还得不出我们想要的结果.”小明接过老师的话说:“那我们继续再翻折3次就可以了”.请参考他们的想法,写出你的答案.
考点分析:
相关试题推荐
为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图和条形统计图(如图所示).
(1)请根据所给的扇形图和条形图,填写出扇形图中缺失的数据,并把条形图补充完整;
(2)在问卷调查中,小丁和小李分别选择了音乐类和美术类,校学生会要从选择音乐类和美术类的学生中分别抽取一名学生参加活动,用列表或画树状图的方法求小丁和小李恰好都被选中的概率;
(3)如果该学校有500名学生,请你估计该学校中最喜欢体育运动的学生约有多少名?
查看答案
如图,AB为⊙O的直径,AB=4,点C在⊙O上,CF⊥OC,且CF=BF.
(1)证明BF是⊙O的切线;
(2)设AC与BF的延长线交于点M,若MC=6,求∠MCF的大小.
查看答案
如图,在梯形ABCD中,AD∥BC,∠B=60°,∠ADC=105°,AD=6,且AC⊥AB,求AB的长.
查看答案
列方程或方程组解应用题:
“五一”节日期间,某超市进行积分兑换活动,具体兑换方法见右表.爸爸拿出自己的积分卡,对小华说:“这里积有8200 分,你去给咱家兑换礼品吧”.小华兑换了两种礼品,共10件,还剩下了200分,请问她兑换了哪两种礼品,各多少件?
积分兑换礼品表 |
兑换礼品 | 积分 |
电茶壶一个 | 7000分 |
保温杯一个 | 2000分 |
牙膏一支 | 500分 |
查看答案
如图,一次函数y=kx+b与反比例函数
的图象交于A(2,1),B(-1,n)两点.
(1)求k和b的值;
(2)结合图象直接写出不等式
的解集.
查看答案