满分5 > 初中数学试题 >

已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角...

已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,
(1)求证:四边形ADCE为矩形;
(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.

manfen5.com 满分网
(1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,我样可以证明四边形ADCE为矩形. (2)根据正方形的判定,我们可以假设当AD=BC,由已知可得,DC=BC,由(1)的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形. (1)证明:在△ABC中,AB=AC,AD⊥BC, ∴∠BAD=∠DAC, ∵AN是△ABC外角∠CAM的平分线, ∴∠MAE=∠CAE, ∴∠DAE=∠DAC+∠CAE=180°=90°, 又∵AD⊥BC,CE⊥AN, ∴∠ADC=∠CEA=90°, ∴四边形ADCE为矩形. (2)当△ABC满足∠BAC=90°时,四边形ADCE是一个正方形. 理由:∵AB=AC, ∴∠ACB=∠B=45°, ∵AD⊥BC, ∴∠CAD=∠ACD=45°, ∴DC=AD, ∵四边形ADCE为矩形, ∴矩形ADCE是正方形. ∴当∠BAC=90°时,四边形ADCE是一个正方形.
复制答案
考点分析:
相关试题推荐
先将manfen5.com 满分网化简,然后请你自选一个合理的x值,求原式的值.
查看答案
如图,点D为AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD长为半径作圆,交AC于另一点E,交AB于点F,G,连接EF.若∠BAC=22°,则∠EFG=   
manfen5.com 满分网 查看答案
钟表的轴心到分针针端的长为4cm,那么经过40分钟,分针针端转过的弧长是     cm(用π表示). 查看答案
如图所示,⊙M与x轴相交于点A(2,0),B(8,0),与y轴相切于点C,则圆心M的坐标是   
manfen5.com 满分网 查看答案
如图所示,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,DC=3,AB=manfen5.com 满分网,则⊙O的直径等于   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.