满分5 >
初中数学试题 >
计算(-1)2011+(-1)2012=( ) A.-2 B.-1 C.2 D....
计算(-1)2011+(-1)2012=( )
A.-2
B.-1
C.2
D.0
考点分析:
相关试题推荐
如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-4,0),点B的坐标是(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上),连接PP′,P′A,P′C.设点P的横坐标为a.
(1)当b=3时,
①求直线AB的解析式;
②若点P′的坐标是(-1,m),求m的值;
(2)若点P在第一象限,记直线AB与P′C的交点为D.当P′D:DC=1:3时,求a的值;
(3)是否同时存在a,b,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.
查看答案
如图所示,抛物线y=ax
2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1,-3).
(1)求抛物线的解析式;
(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;
(3)在第(2)问的结论下,抛物线上的点P使S
△PAD=4S
△ABM成立,求点P的坐标.
查看答案
若x
1、x
2是关于一元二次方程ax
2+bx+c(a≠0)的两个根,则方程的两个根x
1、x
2和系数a、b、c有如下关系:x
1+x
2=-
,x
1•x
2=
.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax
2+bx+c(a≠0)的图象与x轴的两个交点为A(x
1,0),B(x
2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:AB=|x
1-x
2|=
=
=
=
;
参考以上定理和结论,解答下列问题:
设二次函数y=ax
2+bx+c(a>0)的图象与x轴的两个交点A(x
1,0),B(x
2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b
2-4ac的值;
(2)当△ABC为等边三角形时,求b
2-4ac的值.
查看答案
2010年某市出口贸易总值为22.52亿美元,至2012年出口贸易总值达到50.67亿美元,反映了两年来该市出口贸易的高速增长.
(1)求这两年这个市出口贸易的年平均增长率;
(2)按这样的速度增长,请你预测2013年这个市的出口贸易总值.(温馨提示:2252=4×563,5067=9×563)
查看答案
如图,在平行四边形ABCD中,点P是对角线AC上的一点,PE⊥AB,PF⊥AD,垂足分别为E、F,且PE=PF,平行四边形ABCD是菱形吗?为什么?
查看答案