满分5 > 初中数学试题 >

已知:如图,在平面直角坐标系xOy中,直线与x轴、y轴的交点分别为A、B两点,将...

已知:如图,在平面直角坐标系xOy中,直线manfen5.com 满分网与x轴、y轴的交点分别为A、B两点,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.
(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;
(2)若(1)中抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;
(3)若把(1)中的抛物线向左平移3.5个单位,则图象与x轴交于F、N(点F在点N的左侧)两点,交y轴于E点,则在此抛物线的对称轴上是否存在一点Q,使点Q到E、N两点的距离之差最大?若存在,请求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据轴对称和角平分线的性质以及勾股定理可以求出OC的长度,从而求出点C的坐标.再根据直线的解析式求出A、B的坐标,最后利用待定系数法就可以求出抛物线的解析式. (2)根据(1)的解析式可以转化为顶点式而求出顶点坐标D,利用B、C的坐标求出BC的解析式,假设在直线BC上存在满足条件的点P,利用平行四边形的性质和三角形全等的性质求出点P的坐标,得到点P不在直线BC上,而得出结论. (3)平移后根据(1)的解析式可以得到平移后的解析式,顶点坐标及对称轴,可以求出与坐标轴的交点F、N、E的坐标,连接EF,根据E、F的坐标求出其解析式,求出EF与对称轴的交点,就是Q点. 【解析】 (1)连接CH 由轴对称得CH⊥AB,BH=BO,CH=CO ∴在△CHA中由勾股定理,得 AC2=CH2+AH2 ∵直线与x轴、y轴的交点分别为A、B两点 ∴当x=0时,y=6,当y=0时,x=8 ∴B(0,6),A(8,0) ∴OB=6,OA=8, 在Rt△AOB中,由勾股定理,得 AB=10 设C(a,0),∴OC=a ∴CH=a,AH=4,AC=8-a,在Rt△AHC中,由勾股定理,得 (8-a)2=a2+42解得 a=3 C(3,0) 设抛物线的解析式为:y=ax2+bx+c,由题意,得 解得: ∴抛物线的解析式为: ∴ (2)由(1)的结论,得 D() ∴DF= 设BC的解析式为:y=kx+b,则有 解得 直线BC的解析式为:y=-2x+6 设存在点P使四边形ODAP是平行四边形,P(m,n) 作PE⊥OA于E,HD交OA于F. ∴∠PEO=∠AFD=90°,PO=DA,PO∥DA ∴∠POE=∠DAF ∴△OPE≌△ADF ∴PE=DF=n= ∴ ×= P() 当x=时, y=-2×+6=1≠ ∴点P不再直线BC上,即直线BC上不存在满足条件的点P. (3)由题意得,平移后的解析式为: ∴对称轴为:x=2, 当x=0时,y=- 当y=0时,0= 解得: ∵F在N的左边 F(,0),E(0,-),N(,0) 连接EF交x=2于Q,设EF的解析式为:y=kx+b,则有 解得: ∴EF的解析式为:y=-x- ∴ 解得: ∴Q(2,).
复制答案
考点分析:
相关试题推荐
阜宁火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往南京,这列货车可挂A、B两种不同规格的货厢50节,已知用一节A型货厢的运费是0.5万元,用一节B型货厢的运费是0.8万元.
(1)设运输这批货物的总运费为y(万元),用A型货厢的节数为x(节),试写出y与x之间的函数关系式;
(2)已知甲种货物35吨和乙种货物15吨,可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请你设计出来;
(3)利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?
查看答案
如图,已知⊙O的直径AB垂直于弦CD于E,连接AD、BD、OC、OD,且OD=5.
(1)若manfen5.com 满分网,求CD的长.
(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积.
(3)若将(2)中扇形卷成一个圆锥,则此圆锥的侧面积.

manfen5.com 满分网 查看答案
如图所示,在直角坐标系中,点A是反比例函数y1=manfen5.com 满分网的图象上一点,AB⊥x轴的正半轴于B点,C是OB的中点;一次函数y2=ax+b的图象经过A、C两点,并将y轴于点D(0,-2),若S△AOD=4.
(1)求反比例函数和一次函数的解析式;
(2)观察图象,请指出在y轴的右侧,当y1>y2时,x的取值范围.

manfen5.com 满分网 查看答案
如图,在△ABC中,点E、D是AB、AC上两点,满足ED∥BC,ED=2,BC=4,点M时ED的中点,△MBC是等边三角形.
(1)求证:△ABC是等腰三角形.
(2)动点P、Q分别在线段BC、MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式.当y取最小值时,判断△PQC的形状,并说明理由.

manfen5.com 满分网 查看答案
为了更好地宣传“2010年上海世博会”,某中学举行了一次“迎世博知识竞赛”,并从中抽取了部分学生成绩(得分取整数,满分为100分)作为样本,绘制了如下的统计图(如图).请根据图中的信息回答下列问题:
(1)此样本抽取了多少名学生的成绩?
(2)此样本数据的中位数落在哪一个范围内?(写出该组的分数范围)
(3)若这次竞赛成绩高于80分为优秀,已知该校有900名学生参加了这次竞赛活动,请估计该校获得优秀成绩学生的人数约为多少名?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.