满分5 > 初中数学试题 >

定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形. 探究...

定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.
探究:(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.
(2)一般地,“任意三角形都是自相似图形”,只要顺次连接三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连接各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连接它的各边中点所进行的分割,称为2阶分割(如图2)…依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为Sn
①若△DEF的面积为1000,当n为何值时,3<Sn<4?
(请用计算器进行探索,要求至少写出二次的尝试估算过程)
②当n>1时,请写出一个反映Sn-1,Sn,Sn+1之间关系的等式(不必证明)
manfen5.com 满分网
(1)过直角顶点作斜边的垂线即可得出两个与原直角三角形相似的三角形.由于这两个三角形都与原三角形共用一个锐角,又都有一个直角,因此有两个对应角相等,因此都与原三角形相似. (2)由图可知,每分割一次得到的图形的小三角形的个数都是前面一个图形中小三角形的个数的4倍,因此当第n个图时,如果设原三角形的面积为S,那么小三角形的面积应该是Sn=, ①按所求的公式进行计算,看n是多少时Sn的值在3和4之间. ②Sn==,Sn-1==,Sn+1==,由此可看出Sn2=Sn-1•Sn+1 【解析】 (1)正确画出分割线CD (如图,过点C作CD⊥AB,垂足为D,CD即是满足要求的分割线.) 理由:∵∠B=∠B,∠CDB=∠ACB=90° ∴△BCD∽△ACB; (2)①△DEF 经N阶分割所得的小三角形的个数为 Sn= 当 n=3时,S3=≈15.62 当 n=4时,S4=≈3.91 ∴当 n=4时,3<S4<4 ②∵Sn==,Sn-1==,Sn+1== ∴S=Sn-1×Sn+1,Sn-1=4Sn+1.
复制答案
考点分析:
相关试题推荐
如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=5,BC=3.
(1)求sin∠BAC的值;
(2)如果OE⊥AC,垂足为E,求OE的长;
(3)求tan∠ADC的值.(结果保留根号)

manfen5.com 满分网 查看答案
如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E.
(1)求证:∠OPB=∠AEC;
(2)若点C为半圆manfen5.com 满分网的三等分点,请你判断四边形AOEC为哪种特殊四边形?并说明理由.

manfen5.com 满分网 查看答案
已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DF⊥AC于点F,交BA的延长线于点E.求证:
(1)BD=CD;
(2)DE是⊙O的切线.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,点P是AB延长线上一点,PC切⊙O于点C,连接AC,过点O作AC的垂线交AC于点D,交⊙O于点E.已知AB﹦8,∠P=30°.
(1)求线段PC的长;
(2)求阴影部分的面积.

manfen5.com 满分网 查看答案
如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A(0,2),B(5,2)C(6,0),解答下列问题:
(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为______
(2)连接AD,CD,求⊙D的半径(结果保留根号);
(3)求扇形DAC的面积.(结果保留π)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.