满分5 > 初中数学试题 >

已知二次函数y=-x2+4x+5图象交x轴于点A、B,交y轴于点C,点D是该函数...

已知二次函数y=-x2+4x+5图象交x轴于点A、B,交y轴于点C,点D是该函数图象上一点,且点D的横坐标为4,连BD,点P是AB上一动点(不与点A重合),过P作PQ⊥AB交射线AD于点Q,以PQ为一边在PQ的右侧作正方形PQMN.设点P的坐标为(t,0).
(1)求点B,C,D的坐标及射线AD的解析式;
(2)在AB上是否存在点P,使△OCM为等腰三角形?若存在,求正方形PQMN 的边长;若不存在,请说明理由;
(3)设正方形PQMN与△ABD重叠部分面积为s,求s与t的函数关系式.

manfen5.com 满分网
(1)根据二次函数解析式,当x=0时,求出C点坐标;当y=0时,求出B点坐标及点A坐标;将D点横坐标代入y=-x2+4x+5,即可求出点D纵坐标;根据点A、点D坐标,应用待定系数法即可求出射线AD解析式; (2)假设存在点P,使△OCM为等腰三角形,根据勾股定理,若能求出P点坐标,则P存在,同时可求出正方形PQMN 的边长;否则P不存在; (3)由于重叠部分面积是不确定的,所以要根据其重叠程度,分情况讨论,得到不同的表达式. 【解析】 (1)当x=0时,y=5,则C点坐标为(0,5), 当y=0时,-x2+4x+5=0, 解得(x+1)(x-5)=0, x1=-1;x2=5. 则A点坐标为(-1,0),B点坐标为(5,0). 将x=4代入y=-x2+4x+5得,y=-16+16+5=5, 则D点坐标为(4,5). 设AD的解析式为y=kx+b, 把A(-1,0),D(4,5)分别代入解析式y=kx+b得, , 解得, 函数解析式为y=x+1(x≥-1).(2分) (2)∵直线AD的解析式为:y=x+1,且P(t,0). ∴Q(t,t+1),M(2t+1,t+1) 当MC=MO时:t+1=, ∴边长为.…(1分) 当OC=OM时:(2t+1)2+(t+1)2=52 解得(舍去), ∴边长为t+1=.…(2分) 当CO=CM时:(2t+1)2+(4-t)2=52 解得,. ∴边长为t+1=. 或t+1=…(2分) (3)当1<t≤时,正方形的边长为(t+1),故其面积为:s=(t+1)2;…(1分) 当时:;…(1分) 当2≤t≤4时:;…(1分) 当4≤t≤5时:.…(1分)
复制答案
考点分析:
相关试题推荐
已知:△ABC中,AB=10.
(1)如图①,若点D、E分别是AC、BC边的中点,求DE的长;
(2)如图②,若点A1,A2把AC边三等分,过A1,A2作AB边的平行线,分别交BC边于点B1,B2,求A1B1+A2B2的值;
(3)如图③,若点A1,A2,…,A10把AC边十一等分,过各点作AB边的平行线,分别交BC边于点B1,B2,…B10.根据你所发现的规律,直接写出A1B1+A2B2+…+A10B10的结果.
manfen5.com 满分网
查看答案
已知:在矩形A0BC中,分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.E是边AC上的一个动点(不与A,C重合),过E点的反比例函数manfen5.com 满分网的图象与BC边交于点F.
(1)若△OAE、△OBF的面积分别为S1、S2且S1+S2=2,求k的值;
(2)若OB=4,OA=3,记S=S△OEF-S△ECF问当点E运动到什么位置时,S有最大值,其最大值为多少?
(3)请探索:是否存在这样的点E,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,求出点E的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.
探究:(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.
(2)一般地,“任意三角形都是自相似图形”,只要顺次连接三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连接各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连接它的各边中点所进行的分割,称为2阶分割(如图2)…依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为Sn
①若△DEF的面积为1000,当n为何值时,3<Sn<4?
(请用计算器进行探索,要求至少写出二次的尝试估算过程)
②当n>1时,请写出一个反映Sn-1,Sn,Sn+1之间关系的等式(不必证明)
manfen5.com 满分网
查看答案
如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=5,BC=3.
(1)求sin∠BAC的值;
(2)如果OE⊥AC,垂足为E,求OE的长;
(3)求tan∠ADC的值.(结果保留根号)

manfen5.com 满分网 查看答案
如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E.
(1)求证:∠OPB=∠AEC;
(2)若点C为半圆manfen5.com 满分网的三等分点,请你判断四边形AOEC为哪种特殊四边形?并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.