满分5 > 初中数学试题 >

已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别...

已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.
(1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:______
(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)
manfen5.com 满分网
(1)由三角形全等可以证明AH=AB, (2)延长CB至E,使BE=DN,证明△AEM≌△ANM,能得到AH=AB, (3)分别沿AM、AN翻折△AMH和△ANH,得到△ABM和△AND,然后分别延长BM和DN交于点C,得正方形ABCE,设AH=x,则MC=x-2,NC=x-3,在Rt△MCN中,由勾股定理,解得x. 【解析】 (1)如图①AH=AB. (2)数量关系成立.如图②,延长CB至E,使BE=DN. ∵ABCD是正方形, ∴AB=AD,∠D=∠ABE=90°, 在Rt△AEB和Rt△AND中,, ∴Rt△AEB≌Rt△AND, ∴AE=AN,∠EAB=∠NAD, ∴∠EAM=∠NAM=45°, 在△AEM和△ANM中,, ∴△AEM≌△ANM. ∵AB、AH是△AEM和△ANM对应边上的高, ∴AB=AH. (3)如图③分别沿AM、AN翻折△AMH和△ANH,得到△ABM和△AND, ∴BM=2,DN=3,∠B=∠D=∠BAD=90°. 分别延长BM和DN交于点C,得正方形ABCD, 由(2)可知,AH=AB=BC=CD=AD. 设AH=x,则MC=x-2,NC=x-3, 在Rt△MCN中,由勾股定理,得MN2=MC2+NC2 ∴52=(x-2)2+(x-3)2(6分) 解得x1=6,x2=-1.(不符合题意,舍去) ∴AH=6.
复制答案
考点分析:
相关试题推荐
如图1,在平面直角坐标系xOy中,点A,B坐标分别为(8,4),(0,4),线段CD在于x轴上,CD=3,点C从原点出发沿x轴正方向以每秒1个单位长度向右平移,点D随着点C同时同速同方向运动,过点D作x轴的垂线交线段AB于点E,交OA于点G,连接CE交OA于点F.设运动时间为t,当E点到达A点时,停止所有运动.
manfen5.com 满分网
(1)求线段CE的长;
(2)记S为Rt△CDE与△ABO的重叠部分面积,试写出S关于t函数关系式及t的取值范围;
(3)如图2,连接DF,
①当t取何值时,以C,F,D为顶点的三角形为等腰三角形?
②直接写出△CDF的外接圆与OA相切时t的值.
查看答案
已知二次函数y=x2+bx+c与x轴交于A(-1,0)、B(1,0)两点.
(1)求这个二次函数的关系式;
(2)若有一半径为r的⊙P,且圆心P在抛物线上运动,当⊙P与两坐标轴都相切时,求半径r的值.
(3)半径为1的⊙P在抛物线上,当点P的纵坐标在什么范围内取值时,⊙P与y轴相离、相交?
查看答案
如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知OA:OB=1:5,OB=OC,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)点P(2,-3)是抛物线对称轴上的一点,在线段OC上有一动点M,以每秒2个单位的速度从O向C运动,(不与点O,C重合),过点M作MH∥BC,交X轴于点H,设点M的运动时间为t秒,试把△PMH的面积S表示成t的函数,当t为何值时,S有最大值,并求出最大值;
(3)设点E是抛物线上异于点A,B的一个动点,过点E作x轴的平行线交抛物线于另一点F.以EF为直径画⊙Q,则在点E的运动过程中,是否存在与x轴相切的⊙Q?若存在,求出此时点E的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
矩形纸片ABCD中,AD=12cm,现将这张纸片按下列图示方式折叠,AE是折痕.
(1)如图1,P,Q分别为AD,BC的中点,点D的对应点F在PQ上,求PF和AE的长;
(2)如图2,manfen5.com 满分网,点D的对应点F在PQ上,求AE的长;
(3)如图3,manfen5.com 满分网,点D的对应点F在PQ上.
①直接写出AE的长(用含n的代数式表示);  ②当n越来越大时,AE的长越来越接近于______
manfen5.com 满分网
查看答案
已知在平面直角坐标系中,直线manfen5.com 满分网与x轴,y轴相交于A,B两点,直线manfen5.com 满分网与AB相交于C点,点D从点O出发,以每秒1个单位的速度沿x轴向右运动到点A,过点D作x轴的垂线,分别交直线manfen5.com 满分网和直线manfen5.com 满分网于P,Q两点(P点不与C点重合),以PQ为边向左作正△PQR,设正△PQR与△OBC重叠部分的面积为S(平方单位),点D的运动时间为t(秒)
(1)求点A,B,C的坐标; 
(2)若点M(2,3manfen5.com 满分网)正好在△PQR的某边上,求t的值;
(3)求S关于t的函数关系式,并写出相应t的取值范围,求出D在整个运动过程中s的最大值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.