满分5 > 初中数学试题 >

平面直角坐标系中,▱ABOC如图放置,点A、C的坐标分别为(0,3)、(-1,0...

平面直角坐标系中,▱ABOC如图放置,点A、C的坐标分别为(0,3)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到▱A'B'OC'.
(1)若抛物线过点C,A,A',求此抛物线的解析式;
(2)▱ABOC和▱A'B'OC'重叠部分△OC'D的周长;
(3)点M是第一象限内抛物线上的一动点,问:点M在何处时△AMA'的面积最大?最大面积是多少?并求出此时M的坐标.

manfen5.com 满分网
(1)根据旋转的性质求出点A′的坐标,再用待定系数法求出抛物线的解析式; (2)先证明△C′OD∽△BOA,由相似三角形的性质即可得出重叠部分△OC'D的周长; (3)根据三角形面积求出,配方即可得到△AMA'的最大面积和M的坐标. 【解析】 (1)∵▱ABOC绕点O顺时针旋转90°,得到▱A'B'OC',点A的坐标为(0,3), ∴点A′的坐标为(3,0). ∵抛物线过点A、C、A′. 设抛物线的函数表达式为y=ax2+bx+c(a≠0),可得 , 解得. 故此抛物线的解析式为y=-x2+2x+3. (2)∵AB∥CO,∴∠OAB=90°, ∵AB=OC=1,AO=3. ∴OB=. 可证△C′OD∽△BOA, △C′OD的周长与△BOA的周长比=OC′:OB=1: △BOA的周长=4+, △C′OD的周长=. (3)连接A′A,OM,设M点的坐标为:(m,n), ∵点M在抛物线上, ∴n=-m2+2m+3, ∴S△AMA′=S△AMO+S△OMA′-S△AOA′ =OA•m+OA′•n-OA•OA′ =(m+n)- =(m+n-3), 将n=-m2+2m+3代入,原式=-(m2-3m)=-(m-)2+, ∵0<m<3, ∵m=时,n=,△AMA'的面积最大S△AMA'=, ∴M(,),△AMA'的面积最大S△AMA'=.
复制答案
考点分析:
相关试题推荐
已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.
(1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:______
(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)
manfen5.com 满分网
查看答案
如图1,在平面直角坐标系xOy中,点A,B坐标分别为(8,4),(0,4),线段CD在于x轴上,CD=3,点C从原点出发沿x轴正方向以每秒1个单位长度向右平移,点D随着点C同时同速同方向运动,过点D作x轴的垂线交线段AB于点E,交OA于点G,连接CE交OA于点F.设运动时间为t,当E点到达A点时,停止所有运动.
manfen5.com 满分网
(1)求线段CE的长;
(2)记S为Rt△CDE与△ABO的重叠部分面积,试写出S关于t函数关系式及t的取值范围;
(3)如图2,连接DF,
①当t取何值时,以C,F,D为顶点的三角形为等腰三角形?
②直接写出△CDF的外接圆与OA相切时t的值.
查看答案
已知二次函数y=x2+bx+c与x轴交于A(-1,0)、B(1,0)两点.
(1)求这个二次函数的关系式;
(2)若有一半径为r的⊙P,且圆心P在抛物线上运动,当⊙P与两坐标轴都相切时,求半径r的值.
(3)半径为1的⊙P在抛物线上,当点P的纵坐标在什么范围内取值时,⊙P与y轴相离、相交?
查看答案
如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知OA:OB=1:5,OB=OC,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)点P(2,-3)是抛物线对称轴上的一点,在线段OC上有一动点M,以每秒2个单位的速度从O向C运动,(不与点O,C重合),过点M作MH∥BC,交X轴于点H,设点M的运动时间为t秒,试把△PMH的面积S表示成t的函数,当t为何值时,S有最大值,并求出最大值;
(3)设点E是抛物线上异于点A,B的一个动点,过点E作x轴的平行线交抛物线于另一点F.以EF为直径画⊙Q,则在点E的运动过程中,是否存在与x轴相切的⊙Q?若存在,求出此时点E的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
矩形纸片ABCD中,AD=12cm,现将这张纸片按下列图示方式折叠,AE是折痕.
(1)如图1,P,Q分别为AD,BC的中点,点D的对应点F在PQ上,求PF和AE的长;
(2)如图2,manfen5.com 满分网,点D的对应点F在PQ上,求AE的长;
(3)如图3,manfen5.com 满分网,点D的对应点F在PQ上.
①直接写出AE的长(用含n的代数式表示);  ②当n越来越大时,AE的长越来越接近于______
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.