抛物线y=a(x+6)
2-3与x轴相交于A,B两点,与y轴相交于C,D为抛物线的顶点,直线DE⊥x轴,垂足为E,AE
2=3DE.
(1)求这个抛物线的解析式;
(2)P为直线DE上的一动点,以PC为斜边构造直角三角形,使直角顶点落在x轴上.若在x轴上的直角顶点只有一个时,求点P的坐标;
(3)M为抛物线上的一动点,过M作直线MN⊥DM,交直线DE于N,当M点在抛物线的第二象限的部分上运动时,是否存在使点E三等分线段DN的情况?若存在,请求出所有符合条件的M的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
如图,在△ABC中,AB=AC,以AC为直径的圆分别交AB和BC于E、D两点,AD与EC交于G点.过点D作DF⊥AB交AB于F,交AC的延长线于H.
(1)求证:FH为⊙O的切线;
(2)若AC=6,BC=4,求DG.
查看答案
受金融危机影响,某小卖部的经营业绩每况愈下,于是该小卖部开始转行经营A产品.小卖部老板做了市场调查发现:A产品进价为每件30元,目前市场售价为每件40元,每星期可卖出150件,如果售价每涨1元,那么每星期少卖5件.根据目前小卖部的资金实力,每星期进货款不得超过3900元;根据生产厂家的要求,每星期进货量不得少于105件. 设每件涨价x元(x为非负整数),每星期销量为y件,且进货刚好卖完.
(1)求y与x的函数关系式及自变量x的取值范围;
(2)如何定价才能使每星期的利润最大?每星期的最大利润是多少?
查看答案
如图,已知点F的坐标为(3,0),点A,B分别是某函数图象与x轴、y轴的交点,点P是此图象上的一动点.设点P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5-
x(0≤x≤5),给出以下四个结论:①AF=2;②BF=5;③OA=5;④OB=3.其中正确结论的序号是
.
查看答案
如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,OB=1,OA=2.将△AOB绕点O逆时针旋转到△A′B′O,点A的对应点A′落在x轴上,B的对应点恰好落在双曲线
(x<0)上,则k=
.
查看答案
有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字-2,-3和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,则满足x+y=-2的概率是
.
查看答案