在平面直角坐标系xOy中,抛物线y
1=2x
2+
的顶点为M,直线y
2=x,点P(n,0)为x轴上的一个动点,过点P作x轴的垂线分别交抛物线y
1=2x
2+
和直线y
2=x于点A,点B.
(1)直接写出A,B两点的坐标(用含n的代数式表示);
(2)设线段AB的长为d,求d关于n的函数关系式及d的最小值,并直接写出此时线段OB与线段PM的位置关系和数量关系;
(3)已知二次函数y=ax
2+bx+c(a,b,c为整数且a≠0),对一切实数x恒有x≤y≤2x
2+
,求a,b,c的值.
考点分析:
相关试题推荐
如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A开始沿折线AC-CB-BA运动,点P在AC,CB,BA边上运动,速度分别为每秒3,4,5个单位.直线l从与AC重合的位置开始,以每秒
个单位的速度沿CB方向平行移动,即移动过程中保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动.
(1)当t=5秒时,点P走过的路径长为______;当t=______秒时,点P与点E重合;
(2)当点P在AC边上运动时,将△PEF绕点E逆时针旋转,使得点P的对应点M落在EF上,点F的对应点记为点N,当EN⊥AB时,求t的值;
(3)当点P在折线AC-CB-BA上运动时,作点P关于直线EF的对称点,记为点Q.在点P与直线l运动的过程中,若形成的四边形PEQF为菱形,请直接写出t的值.
查看答案
在平面直角坐标系xOy中,A为第一象限内的双曲线
(k
1>0)上一点,点A
的横坐标为1,过点A作平行于 y轴的直线,与x轴交于点B,与双曲线
(k
2<0)交于点C.x轴上一点D(m,0)位于直线AC右侧,AD的中点为E.
(1)当m=4时,求△ACD的面积(用含k
1,k
2的代数式表示);
(2)若点E恰好在双曲线
(k
1>0)上,求m的值;
(3)设线段EB的延长线与y轴的负半轴交于点F,当点D的坐标为D(2,0)时,若△BDF的面积为1,且CF∥AD,求k
1的值,并直接写出线段CF的长.
查看答案
阅读下列材料
小华在学习中发现如下结论:
如图1,点A,A
1,A
2在直线l上,当直线l∥BC时,
.
请你参考小华的学习经验画图(保留画图痕迹):
(1)如图2,已知△ABC,画出一个等腰△DBC,使其面积与△ABC面积相等;
(2)如图3,已知△ABC,画出两个Rt△DBC,使其面积与△ABC面积相等(要求:所画的两个三角形不全等);
(3)如图4,已知等腰△ABC中,AB=AC,画出一个四边形ABDE,使其面积与△ABC面积相等,且一组对边DE=AB,另一组对边BD≠AE,对角∠E=∠B.
查看答案
如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.
(1)求证:AP是⊙O的切线;
(2)若OC=CP,AB=
,求CD的长.
查看答案
如图,在平面直角坐标系xOy中,直线
与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.
(1)求AB的长和点C的坐标;
(2)求直线CD的解析式.
查看答案