满分5 > 初中数学试题 >

已知:等边三角形ABC (1)如图1,P为等边△ABC外一点,且∠BPC=120...

已知:等边三角形ABC
(1)如图1,P为等边△ABC外一点,且∠BPC=120°.试猜想线段BP、PC、AP之间的数量关系,并证明你的猜想;
(2)如图2,P为等边△ABC内一点,且∠APD=120°.求证:PA+PD+PC>BD.
manfen5.com 满分网
(1)AP=BP+PC,理由是延长BP至E,使PE=PC,连接CE,由∠BPC=120°,推出等边△CPE,得到CP=PE=CE,∠PCE=60°,根据已知等边△ABC,推出AC=BC,∠ACP=∠BCE,根据三角形全等的判定推出△ACP≌△BCE,得出AP=BE即可求出结论; (2)在AD外侧作等边△AB′D,由(1)得PB′=AP+PD,根据三角形的三边关系定理得到PA+PD+PC>CB′,再证△AB′C≌△ADB,根据全等三角形的性质推出CB′=BD即可. 猜想:AP=BP+PC, (1)证明:延长BP至E,使PE=PC,连接CE, ∵∠BPC=120°, ∴∠CPE=60°,又PE=PC, ∴△CPE为等边三角形, ∴CP=PE=CE,∠PCE=60°, ∵△ABC为等边三角形, ∴AC=BC,∠BCA=60°, ∴∠ACB=∠PCE, ∴∠ACB+∠BCP=∠PCE+∠BCP, 即:∠ACP=∠BCE, ∴△ACP≌△BCE, ∴AP=BE, ∵BE=BP+PE, ∴AP=BP+PC. (2)证明: 在AD外侧作等边△AB′D, 则点P在三角形ADB′外, ∵∠APD=120°∴由(1)得PB′=AP+PD, 在△PB′C中,有PB′+PC>CB′, ∴PA+PD+PC>CB′, ∵△AB′D、△ABC是等边三角形, ∴AC=AB,AB′=AD, ∠BAC=∠DAB′=60°, ∴∠BAC+∠CAD=∠DAB′+∠CAD, 即:∠BAD=∠CAB′, ∴△AB′C≌△ADB, ∴CB′=BD, ∴PA+PD+PC>BD.
复制答案
考点分析:
相关试题推荐
如图,抛物线y=mx2+3mx-3(m>0)与y轴交于点C,与x轴交于A、B两点,点A在点B的左侧,且manfen5.com 满分网
(1)求此抛物线的解析式;
(2)如果点D是线段AC下方抛物线上的动点,设D点的横坐标为x,△ACD的面积为S,求S与x的关系式,并求当S最大时点D的坐标;
(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点的平行四边形?若存在求点P坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知:关于x的一元二次方程mx2-(3m-2)x+2m-2=0.
(1)若方程有两个不相等的实数根,求m的取值范围;
(2)在(1)的条件下,求证:无论m取何值,抛物线y=mx2-(3m-2)x+2m-2总过x轴上的一个固定点;
(3)若m为正整数,且关于x的一元二次方程mx2-(3m-2)x+2m-2=0有两个不相等的整数根,把抛物线y=mx2-(3m-2)x+2m-2向右平移4个单位长度,求平移后的抛物线的解析式.
查看答案
小明想把一个三角形拼接成面积与它相等的矩形.他先进行了如下部分操作,如图1所示:
①取△ABC的边AB、AC的中点D、E,连接DE;
②过点A作AF⊥DE于点F;
(1)请你帮小明完成图1的操作,把△ABC拼接成面积与它相等的矩形.
(2)若把一个三角形通过类似的操作拼接成一个与原三角形面积相等的
正方形,那么原三角形的一边与这边上的高之间的数量关系是______
(3)在下面所给的网格中画出符合(2)中条件的三角形,并将其拼接成面积与它相等的正方形.
manfen5.com 满分网

manfen5.com 满分网 查看答案
某校七年级共有500名学生,团委准备调查他们对“低碳”知识的了解程度,
(1)在确定调查方式时,团委设计了以下三种方案:
方案一:调查七年级部分女生;
方案二:调查七年级部分男生;
方案三:到七年级每个班去随机调查一定数量的学生
请问其中最具有代表性的一个方案是______
(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将其补充完整;
(3)请你估计该校七年级约有多少名学生比较了解“低碳”知识.manfen5.com 满分网
查看答案
如图在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E,连接EB交OD于点F.
(1)求证:OD⊥BE;
(2)若DE=manfen5.com 满分网,AB=5,求AE的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.