考点分析:
相关试题推荐
已知:如图,在梯形ABCD中,∠BCD=90°,tan∠ADC=2,点E在梯形内,点F在梯形外,
,∠EDC=∠FBC,且DE=BF.
(1)判断△ECF的形状特点,并证明你的结论;
(2)若∠BEC=135°,求∠BFE的正弦值.
查看答案
已知:如图,等边△ABC中,AB=1,P是AB边上一动点,作PE⊥BC,垂足为E;作EF⊥AC,垂足为F;作FQ⊥AB,垂足为Q.
(1)设BP=x,AQ=y,求y与x之间的函数关系式;
(2)当点P和点Q重合时,求线段EF的长;
(3)当点P和点Q不重合,但线段PE、FQ延长线相交时,求它们与线段EF围成的三角形周长的取值范围.
查看答案
已知在同一直角坐标系中,直线l:y=x-3k+6与y轴交于点P,M是抛物线C:y=x
2-2 (k+2)x+8k的顶点.
(1)求证:当k≠2时,抛物线C与x轴必定交于两点;
(2)A、B是抛物线c与x轴的两交点,A、B在y轴两侧,且A在B的左边,判断:直线l能经过点B吗?(需写出判断的过程)
(3)在(2)的条件下,是否存在实数k,使△ABP和△ABM的面积相等?如果存在,请求出此时抛物线C的解析式;若不存在,请说明理由.
查看答案
将正方形ABCD(如图1)作如下划分:
第1次划分:分别连接正方形ABCD对边的中点(如图2),得线段HF和EG,它们交于点M,此时图2中共有5个正方形;
第2次划分:将图2左上角正方形AEMH按上述方法再作划分,得图3,则图3中共有______个正方形;
若每次都把左上角的正方形依次划分下去,则第100次划分后,图中共有______个正方形;
继续划分下去,能否将正方形ABCD划分成有2011个正方形的图形?需说明理由.
查看答案
如图,等腰△ABC中,AE是底边BC上的高,点O在AE上,⊙O与AB和BC分别相切.
(1)⊙O是否为△ABC的内切圆?请说明理由.
(2)若AB=5,BC=4,求⊙O的半径.
查看答案