满分5 > 初中数学试题 >

如图,在平面直角坐标系中,将一块腰长为的等腰直角三角板ABC放在第二象限,且斜靠...

如图,在平面直角坐标系中,将一块腰长为manfen5.com 满分网的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(-1,0),点B在抛物线y=ax2+ax-2上.
(1)点A的坐标为______,点B的坐标为______
(2)抛物线的解析式为______
(3)设(2)中抛物线的顶点为D,求△DBC的面积;
(4)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)先根据勾股定理求出OA的长,即可得出点A的坐标,再求出OE、BE的长即可求出B的坐标; (2)把点B的坐标代入抛物线的解析式,求出a的值,即可求出抛物线的解析式; (3)先求出点D的坐标,再用待定系数法求出直线BD的解析式,然后求出CF的长,再根据S△DBC=S△CEB+S△CED进行计算即可; (4)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形: ①若以点C为直角顶点;则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,过点P1作P1M⊥x轴,由全等三角形的判定定理可得△MP1C≌△FBC,再由全等三角形的对应边相等可得出点P1点的坐标; ②若以点A为直角顶点;则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,由全等三角形的性质可得出点P2的坐标;点P1、P2的坐标代入抛物线的解析式进行检验即可. 【解析】 (1)∵C(-1,0),AC=, ∴OA===2, ∴A(0,2); 过点B作BF⊥x轴,垂足为F, ∵∠ACO+∠CAO=90°,∠ACO+∠BCF=90°,∠BCF+∠FBC=90°, 在△AOC与△CFB中, ∵, ∴△AOC≌△CFB, ∴CF=OA=2,BF=OC=1, ∴OF=3, ∴B的坐标为(-3,1), 故答案为:(0,2),(-3,1); (2)∵把B(-3,1)代入y=ax2+ax-2得: 1=9a-3a-2, 解得a=, ∴抛物线解析式为:y=x2+x-2. 故答案为:y=x2+x-2; (3)由(2)中抛物线的解析式可知,抛物线的顶点D(-,-), 设直线BD的关系式为y=kx+b,将点B、D的坐标代入得: , 解得. ∴BD的关系式为y=-x-. 设直线BD和x 轴交点为E,则点E(-,0),CE=. ∴S△DBC=××(1+)=; (4)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形: ①若以点C为直角顶点; 则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1, 过点P1作P1M⊥x轴, ∵CP1=BC,∠MCP1=∠BCF,∠P1MC=∠BFC=90°, ∴△MP1C≌△FBC. ∴CM=CF=2,P1M=BF=1, ∴P1(1,-1); ②若以点A为直角顶点; 则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2, 过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO, ∴NP2=OA=2,AN=OC=1, ∴P2(2,1), 经检验,点P1(1,-1)与点P2(2,1)都在抛物线y=x2+x-2上.
复制答案
考点分析:
相关试题推荐
为了探索代数式manfen5.com 满分网的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则manfen5.com 满分网manfen5.com 满分网,则问题即转化成求AC+CE的最小值.
(1)我们知道当A、C、E在同一直线上时,AC+CE的值最小,于是可求得manfen5.com 满分网的最小值等于______,此时x=______
(2)请你根据上述的方法和结论,试构图求出代数式manfen5.com 满分网的最小值.

manfen5.com 满分网 查看答案
某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
(成本=进价×销售量)
查看答案
某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到______元购物券,至多可得到______元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
查看答案
如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE,CE.
(1)求证:△ABE≌△ACE;
(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.

manfen5.com 满分网 查看答案
贵阳市某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛,同学们积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如下两幅统计图.
manfen5.com 满分网
请你根据图中所给信息解答下列问题:
(1)一等奖所占的百分比是______
(2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整;
(3)各奖项获奖学生分别有多少人?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.