满分5 > 初中数学试题 >

已知:如图①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,点...

已知:如图①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),解答下列问题:
(1)当t为何值时,PQ∥BC;
(2)设△AQP的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;
(4)如图②,连接PC,并把△PQC沿QC翻折,得到四边形PQP′C,那么是否存在某一时刻t,使四边形PQP′C为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
manfen5.com 满分网
(1)当PQ∥BC时,我们可得出三角形APQ和三角形ABC相似,那么可得出关于AP,AB,AQ,AC的比例关系,我们观察这四条线段,已知的有AC,根据P,Q的速度,可以用时间t表示出AQ,BP的长,而AB可以用勾股定理求出,这样也就可以表示出AP,那么将这些数值代入比例关系式中,即可得出t的值. (2)求三角形APQ的面积就要先确定底边和高的值,底边AQ可以根据Q的速度和时间t表示出来.关键是高,可以用AP和∠A的正弦值来求.AP的长可以用AB-BP求得,而sinA就是BC:AB的值,因此表示出AQ和AQ边上的高后,就可以得出y与t的函数关系式. (3)如果将三角形ABC的周长和面积平分,那么AP+AQ=BP+BC+CQ,那么可以用t表示出CQ,AQ,AP,BP的长,那么可以求出此时t的值,我们可将t的值代入(2)的面积与t的关系式中,求出此时面积是多少,然后看看面积是否是三角形ABC面积的一半,从而判断出是否存在这一时刻. (4)我们可通过构建相似三角形来求解.过点P作PM⊥AC于M,PN⊥BC于N,那么PNCM就是个矩形,解题思路:通过三角形BPN和三角形ABC相似,得出关于BP,PN,AB,AC的比例关系,即可用t表示出PN的长,也就表示出了MC的长,要想使四边形PQP'C是菱形,PQ=PC,根据等腰三角形三线合一的特点,QM=MC,这样有用t表示出的AQ,QM,MC三条线段和AC的长,就可以根据AC=AQ+QM+MC来求出t的值.求出了t就可以得出QM,CM和PM的长,也就能求出菱形的边长了. 【解析】 (1)在Rt△ABC中,AB=, 由题意知:AP=5-t,AQ=2t,若PQ∥BC,则△APQ∽△ABC, ∴=,∴=, ∴t=.所以当t=时,PQ∥BC. (2)过点P作PH⊥AC于H. ∵△APH∽△ABC, ∴=, ∴=, ∴PH=3-t, ∴y=×AQ×PH=×2t×(3-t)=-t2+3t. (3)若PQ把△ABC周长平分,则AP+AQ=BP+BC+CQ. ∴(5-t)+2t=t+3+(4-2t),解得t=1. 若PQ把△ABC面积平分,则S△APQ=S△ABC,即-+3t=3. ∵t=1代入上面方程不成立, ∴不存在这一时刻t,使线段PQ把Rt△ACB的周长和面积同时平分. (4)过点P作PM⊥AC于M,PN⊥BC于N, 若四边形PQP'C是菱形,那么PQ=PC. ∵PM⊥AC于M, ∴QM=CM. ∵PN⊥BC于N,易知△PBN∽△ABC. ∴=,∴=, ∴PN=, ∴QM=CM=, ∴t+t+2t=4,解得:t=. ∴当t=s时,四边形PQP'C是菱形. 此时PM=3-t=cm,CM=t=cm, 在Rt△PMC中,PC===cm, ∴菱形PQP′C边长为cm.
复制答案
考点分析:
相关试题推荐
某单位组织员工到明文化村(阳山碑材)景区旅游,现计划用1536元组织第一批员工去旅游,如果人数不超过30人,旅游费为50元/人;如果人数多于30人,那么每增加1人,人均旅游费降低1元,但人均旅游费不得低于40元,请你根据以上信息提出一个用一元二次方程解答的问题,并写出解答过程.
查看答案
如图,⊙O的直径AB=4,C、D为圆周上两点,且四边形OBCD是菱形,过点D的直线EF∥AC,交BA、BC的延长线于点E、F.
(1)判断直线EF与⊙O的位置关系,说明理由;
(2)求DE的长.

manfen5.com 满分网 查看答案
如图,公路上A、B、C三个汽车站,一辆汽车上午8点从离A站10km的P地出发,向C站匀速行驶,15min后离A站30km.
(1)设出发xh后,汽车离A站ykm,写出y与x之间的函数关系式;
(2)当汽车行驶到离A站250km的B站时,接到通知要在中午12点前赶到离B站60km的C站,如果汽车按原速行驶能否准时到达?如果能,则在几点几分到达?如果不能,则车速最少应提高到多少?
manfen5.com 满分网
查看答案
从3名男生和2名女生中随机抽取2014年南京青奧会志愿者.求下列事件的概率:
(1)抽取1名,恰好是女生;
(2)抽取2名,恰好是1名男生和1名女生.
查看答案
如图,某数学兴趣小组进行测量学校旗杆高度的数学活动,甲、乙两人分别站在旗杆的东、西两侧相距80m的点A、B处,利用测角仪在标杆顶端D、E处侧得旗杆顶端C的仰角分别为30°、55°,测角仪距地面1.6m.求学校旗杆CF的高度(精确到0.1m)(参考数据sin55°≈0.81,cos55°≈0.57,tan55°≈1.42,manfen5.com 满分网

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.