满分5 > 初中数学试题 >

问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体...

问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:
manfen5.com 满分网
甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.
乙组:如图2,测得学校旗杆的影长为900cm.
丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:
(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;
(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602
此题属于实际应用问题,解题时首先要理解题意,然后将实际问题转化为数学问题进行解答;此题需要转化为相似三角形的问题解答,利用相似三角形的性质,相似三角形的对应边成比例解答. 【解析】 (1)由题意可知:∠BAC=∠EDF=90°,∠BCA=∠EFD. ∴△ABC∽△DEF. ∴,即,(2分) ∴DE=1200(cm). 所以,学校旗杆的高度是12m.(3分) (2)解法一: 与①类似得:,即, ∴GN=208.(4分) 在Rt△NGH中,根据勾股定理得:NH2=1562+2082=2602, ∴NH=260.(5分) 设⊙O的半径为rcm,连接OM, ∵NH切⊙O于M,∴OM⊥NH.(6分) 则∠OMN=∠HGN=90°, 又∵∠ONM=∠HNG, ∴△OMN∽△HGN, ∴(7分), 又ON=OK+KN=OK+(GN-GK)=r+8, ∴, 解得:r=12. ∴景灯灯罩的半径是12cm.(8分) 解法二: 与①类似得:, 即, ∴GN=208.(4分) 设⊙O的半径为rcm,连接OM, ∵NH切⊙O于M, ∴OM⊥NH.(5分) 则∠OMN=∠HGN=90°, 又∵∠ONM=∠HNG, ∴△OMN∽△HGN. ∴, 即,(6分) ∴MN=r, 又∵ON=OK+KN=OK+(GN-GK)=r+8.(7分) 在Rt△OMN中,根据勾股定理得: r2+(r)2=(r+8)2即r2-9r-36=0, 解得:r1=12,r2=-3(不合题意,舍去), ∴景灯灯罩的半径是12cm.(8分)
复制答案
考点分析:
相关试题推荐
一辆公共汽车上有(5a-4)名乘客,到某一车站有(9-2a)名乘客下车,车上原来有多少名乘客?
查看答案
有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1,2,3,4(如图所示),另有一个不透明的口袋装有分别标有数0,1,3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.
(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;
(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过O作OE∥AB,交BC于E,求证:ED为⊙O的切线.

manfen5.com 满分网 查看答案
某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成如下的两幅不完整的统计图,要求每位同学必选一种而且只能选择一种自己喜欢的球类;喜欢某一种球类的学生人数如图1、图2所示.
请你根据图中提供的信息解答下列问题:
(1)在这次研究中,一共调查了多少名学生?喜欢足球人数的百分率为多少?
(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度?
(3)补全频数分布折线统计图.
manfen5.com 满分网
查看答案
如图:已知梯形ABCD中,AB∥CD,AD=BC,点E是底边AB的中点,求证:DE=CE.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.