满分5 > 初中数学试题 >

已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x...

已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据抛物线过C(0,4)点,可确定c=4,然后可将A的坐标代入抛物线的解析式中,即可得出二次函数的解析式. (2)可先设Q的坐标为(m,0);通过求△CEQ的面积与m之间的函数关系式,来得出△CQE的面积最大时点Q的坐标. △CEQ的面积=△CBQ的面积-△BQE的面积. 可用m表示出BQ的长,然后通过相似△BEQ和△BCA得出△BEQ中BQ边上的高,进而可根据△CEQ的面积计算方法得出△CEQ的面积与m的函数关系式,可根据函数的性质求出△CEQ的面积最大时,m的取值,也就求出了Q的坐标. (3)本题要分三种情况进行求【解析】 ①当OD=OF时,OD=DF=AD=2,又有∠OAF=45°,那么△OFA是个等腰直角三角形,于是可得出F的坐标应该是(2,2).由于P,F两点的纵坐标相同,因此可将F的纵坐标代入抛物线的解析式中即可求出P的坐标. ②当OF=DF时,如果过F作FM⊥OD于M,那么FM垂直平分OD,因此OM=1,在直角三角形FMA中,由于∠OAF=45°,因此FM=AM=3,也就得出了F的纵坐标,然后根据①的方法求出P的坐标. ③当OD=OF时,OF=2,由于O到AC的最短距离为2,因此此种情况是不成立的. 综合上面的情况即可得出符合条件的P的坐标. 【解析】 (1)由题意,得 解得(2分) ∴所求抛物线的解析式为:y=-x2+x+4. (2)设点Q的坐标为(m,0),过点E作EG⊥x轴于点G. 由-x2+x+4=0, 得x1=-2,x2=4 ∴点B的坐标为(-2,0) ∴AB=6,BQ=m+2 ∵QE∥AC ∴△BQE∽△BAC ∴ 即 ∴ ∴S△CQE=S△CBQ-S△EBQ =BQ•CO-BQ•EG =(m+2)(4-) = =-(m-1)2+3 又∵-2≤m≤4 ∴当m=1时,S△CQE有最大值3,此时Q(1,0). (3)存在.在△ODF中. (ⅰ)若DO=DF ∵A(4,0),D(2,0) ∴AD=OD=DF=2 又在Rt△AOC中,OA=OC=4 ∴∠OAC=45度 ∴∠DFA=∠OAC=45度 ∴∠ADF=90度.此时,点F的坐标为(2,2) 由-x2+x+4=2, 得x1=1+,x2=1- 此时,点P的坐标为:P(1+,2)或P(1-,2). (ⅱ)若FO=FD,过点F作FM⊥x轴于点M 由等腰三角形的性质得:OM=OD=1 ∴AM=3 ∴在等腰直角△AMF中,MF=AM=3 ∴F(1,3) 由-x2+x+4=3, 得x1=1+,x2=1- 此时,点P的坐标为:P(1+,3)或P(1-,3). (ⅲ)若OD=OF ∵OA=OC=4,且∠AOC=90° ∴AC= ∴点O到AC的距离为,而OF=OD=2,与OF≥2矛盾,所以AC上不存在点使得OF=OD=2, 此时,不存在这样的直线l,使得△ODF是等腰三角形 综上所述,存在这样的直线l,使得△ODF是等腰三角形 所求点P的坐标为:P(1+,2)或P(1-,2)或P(1+,3)或P(1-,3).
复制答案
考点分析:
相关试题推荐
某瓜果基地市场部为指导该基地某种蔬菜的生产销售,在对历年市场行情和生产情况进行调查的基础上,对今年这种蔬菜上市后的市场售价和生产成本进行了预测,提供了两个方面的信息,如图所示.注:两图中的每个实心点所对应的纵坐标分别指相应月份的售价和成本,生产成本6月份最低,图甲的图象是线段,图乙的图象是抛物线.
请你根据图象提供的信息说明:
(1)在3月份出售这种蔬菜,每千克的收益是多少元?(收益=售价-成本)
(2)哪个月出售这种蔬菜,每千克的收益最大?说明理由;
(3)已知市场部销售该种蔬菜,4、5两个月的总收益为48万元,且5月份的销量比4月份的销量多2万公斤,求4、5两个月销量各多少万公斤?
manfen5.com 满分网
查看答案
问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:
manfen5.com 满分网
甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.
乙组:如图2,测得学校旗杆的影长为900cm.
丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:
(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;
(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602
查看答案
一辆公共汽车上有(5a-4)名乘客,到某一车站有(9-2a)名乘客下车,车上原来有多少名乘客?
查看答案
有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1,2,3,4(如图所示),另有一个不透明的口袋装有分别标有数0,1,3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.
(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;
(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过O作OE∥AB,交BC于E,求证:ED为⊙O的切线.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.