满分5 > 初中数学试题 >

如图,在平行四边形ABCD中,P是CD边上的一点,AP与BP分别平分∠DAB和∠...

如图,在平行四边形ABCD中,P是CD边上的一点,AP与BP分别平分∠DAB和∠CBA.
(1)判断△APB是什么三角形,证明你的结论;
(2)比较DP与PC的大小;
(3)画出以AB为直径的⊙O,交AD于点E,连接BE与AP交于点F,若tan∠BPC=manfen5.com 满分网,求tan∠AFE的值.

manfen5.com 满分网
(1)可通过角的度数来判断三角形APB的形状.由于ABCD是平行四边形,AD∥BC,那么同旁内角∠DAB和∠CBA的和应该是180°,AP,BE平分∠DAB,∠ABP,于是∠PAB和∠ABP的和就应该是90°,即∠APB=90°,因此可得出三角形APB的形状. (2)可通过平行和角平分线,通过等角对等边得出DP=AP,同理可证出PC=BC,根据平行四边形的性质,AD=BC,可得出DP=PC. (3)由AB为圆的直径,根据直径所对的圆周角为直角得到∠AEB=∠APB=90°,又AP为角平分线,根据角平分线定义得到一对角相等,根据两对角相等的两三角形相似,得到三角形AEF与三角形APB相似,进而得到对应角相等,又平行四边形的对边AB与DC平行,得到一对内错角相等,等量代换得到∠AFE与∠BPC相等,即可求出所求∠AFE的正切值. 【解析】 (1)△APB是直角三角形,理由如下: ∵AD∥BC, ∴∠DAB+∠ABC=180°; 又∵AP与BP分别平分∠DAB和∠CBA ∴∠PAB=∠DAB,∠PBA=∠ABC, ∴∠PAB+∠PBA=(∠ABC+∠DAB) =×180°=90°, ∴△APB是直角三角形; (2)∵DC∥AB, ∴∠BAP=∠DPA. ∵∠DAP=∠PAB, ∴∠DAP=∠DPA, ∴DA=DP 同理证得CP=CB. ∴DP=PC. (3)∵AB是⊙O直径, ∴∠AEB=∠APB=90°. ∵AP为角平分线,即∠EAF=∠PAB, ∴△AEF∽△APB, ∴∠AFE=∠ABP, 又ABCD为平行四边形,∴DC∥AB, ∴∠ABP=∠BPC, ∵tan∠BPC=, ∴tan∠AFE=.
复制答案
考点分析:
相关试题推荐
某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.
打折前一次性购物总金额优惠措施
不超过300元不优惠
超过300元且不超过400元售价打九折
超过400元售价打八折
(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?
(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;
(3)在“五•一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销的活动.
按上述优惠条件,若小王第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折的一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算求出所有符合要求的结果)
查看答案
某校一课外活动小组为了解学生最喜欢的球类运动情况,随机抽查本校九年级的200名学生,调查的结果如图所示.请根据该扇形统计图解答以下问题:
(1)求图中的x的值;
(2)求最喜欢乒乓球运动的学生人数;
(3)若由3名最喜欢篮球运动的学生,1名最喜欢乒乓球运动的学生,1名最喜欢足球运动的学生组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.
manfen5.com 满分网
查看答案
为响应环保组织提出的“低碳生活”的号召,李明决定不开汽车而改骑自行车上班.有一天,李明骑自行车从家里到工厂上班,途中因自行车发生故障,修车耽误了一段时间,车修好后继续骑行,直至到达工厂(假设在骑自行车过程中匀速行驶).李明离家的距离y(米)与离家时间x(分钟)的关系表示如图:
(1)李明从家出发到出现故障时的速度为______米/分钟;
(2)李明修车用时______分钟;
(3)求线段BC所对应的函数关系式.(不要求写出自变量的取值范围)

manfen5.com 满分网 查看答案
如图所示,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作BC的平行线交CE的延长线于点F,连接BF.
(1)求证:AF=BD;
(2)如果AB=AC,试证明:四边形AFBD为矩形.

manfen5.com 满分网 查看答案
已知关于x的一元二次方程x2=2(1-m)x-m2的两实数根为x1,x2
(1)求m的取值范围;
(2)设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.