满分5 > 初中数学试题 >

如图,已知抛物线y=-x2+x+4交x轴的正半轴于点A,交y轴于点B. (1)求...

如图,已知抛物线y=-manfen5.com 满分网x2+x+4交x轴的正半轴于点A,交y轴于点B.
(1)求A、B两点的坐标,并求直线AB的解析式;
(2)设P(x,y)(x>0)是直线y=x上的一点,Q是OP的中点(O是原点),以PQ为对角线作正方形PEQF,若正方形PEQF与直线AB有公共点,求x的取值范围;
(3)在(2)的条件下,记正方形PEQF与△OAB公共部分的面积为S,求S关于x的函数解析式,并探究S的最大值.

manfen5.com 满分网
(1)抛物线的解析式中,令x=0可求出B点的坐标,令y=0可求出A点的坐标,然后用待定系数法即可求出直线AB的解析式; (2)可分别求出当点P、点Q在直线AB上时x的值,即可得到所求的x的取值范围; (3)此题首先要计算出一个关键点:即直线AB过E、F时x的值(由于直线AB与直线OP垂直,所以直线AB同时经过E、F),此时点E的坐标为(x,),代入直线AB的解析式即可得到x=; ①当2≤x<时,直线AB与PE、PF相交,设交点为C、D;那么重合部分的面积为正方形QEPF和等腰Rt△PDC的面积差,由此可得到关于S、x的函数关系式,进而可根据函数的性质及自变量的取值范围求出S的最大值及对应的x的值; ②当≤x≤4时,直线AB与QE、QF相交,设交点为M、N;此时重合部分的面积为等腰Rt△QMN的面积,可参照①的方法求出此时S的最大值及对应的x的值; 综合上述两种情况,即可比较得出S的最大值及对应的x的值. 【解析】 (1)令y=0, 得-x2+x+4=0,即x2-2x-8=0; 解得x=-2,x=4; 所以A(4,0); 令x=0,得y=4, 所以B(0,4); 设直线AB的解析式为y=kx+b, 则有:, 解得,故此直线的解析式为:y=-x+4; (2)当P(x,y)在直线AB上时,x=-x+4,解得x=2; 当Q(,)在直线AB上时,=-+4,解得x=4; 所以正方形PEQF与直线AB有公共点,且2≤x≤4; (3)当点E(x,)在直线AB上时, (此时点F也在直线AB上)=-x+4,解得x=; ①当2≤x<时,直线AB分别与PE、PF有交点, 设交点分别为C、D; 此时PC=x-(-x+4)=2x-4,又PD=PC, 所以S△PCD=PC2=2(x-2)2; S=S正方形PEQF-S△PCD=QE2-S△PCD=(x-)2-S△PCD 从而S=x2-2(x-2)2=-x2+8x-8=-(x-)2+; 因为2≤<, 所以当x=时,Smax=; ②当≤x≤4时,直线AB分别与QE、QF有交点,设交点分别为M、N; 此时QN=(-+4)-=-x+4,又QM=QN, 所以S△QMN=QN2=(x-4)2, 即S=(x-4)2; 当x=时,Smax=; 综合①②得:当x=时,Smax=.
复制答案
考点分析:
相关试题推荐
如图,在平行四边形ABCD中,P是CD边上的一点,AP与BP分别平分∠DAB和∠CBA.
(1)判断△APB是什么三角形,证明你的结论;
(2)比较DP与PC的大小;
(3)画出以AB为直径的⊙O,交AD于点E,连接BE与AP交于点F,若tan∠BPC=manfen5.com 满分网,求tan∠AFE的值.

manfen5.com 满分网 查看答案
某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.
打折前一次性购物总金额优惠措施
不超过300元不优惠
超过300元且不超过400元售价打九折
超过400元售价打八折
(1)若该商场同时购进甲、乙两种商品共100件恰好用去2700元,求能购进甲、乙两种商品各多少件?
(2)该商场为使甲、乙两种商品共100件的总利润(利润=售价-进价)不少于750元,且不超过760元,请你帮助该商场设计相应的进货方案;
(3)在“五•一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销的活动.
按上述优惠条件,若小王第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折的一次性付款324元,那么这两天他在该商场购买甲、乙两种商品一共多少件?(通过计算求出所有符合要求的结果)
查看答案
某校一课外活动小组为了解学生最喜欢的球类运动情况,随机抽查本校九年级的200名学生,调查的结果如图所示.请根据该扇形统计图解答以下问题:
(1)求图中的x的值;
(2)求最喜欢乒乓球运动的学生人数;
(3)若由3名最喜欢篮球运动的学生,1名最喜欢乒乓球运动的学生,1名最喜欢足球运动的学生组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.
manfen5.com 满分网
查看答案
为响应环保组织提出的“低碳生活”的号召,李明决定不开汽车而改骑自行车上班.有一天,李明骑自行车从家里到工厂上班,途中因自行车发生故障,修车耽误了一段时间,车修好后继续骑行,直至到达工厂(假设在骑自行车过程中匀速行驶).李明离家的距离y(米)与离家时间x(分钟)的关系表示如图:
(1)李明从家出发到出现故障时的速度为______米/分钟;
(2)李明修车用时______分钟;
(3)求线段BC所对应的函数关系式.(不要求写出自变量的取值范围)

manfen5.com 满分网 查看答案
如图所示,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作BC的平行线交CE的延长线于点F,连接BF.
(1)求证:AF=BD;
(2)如果AB=AC,试证明:四边形AFBD为矩形.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.