某地震救援队探测出某建筑物废墟下方点C处有生命迹象,已知废墟一侧地面上探测点A、B相距4m,探测线与地面的夹角分别是30°和60°,试确定生命所在点C的深度(结果精确到0.1m,参考数据:
十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.
请你观察下列几种简单多面体模型,解答下列问题:
(1)根据上面多面体模型,完成表格中的空格:
多面体 | 顶点数(V) | 面数(F) | 棱数(E) |
四面体 | 4 | 4 | ______ |
长方体 | 8 | 6 | 12 |
正八面体 | ______ | 8 | 12 |
正十二面体 | 20 | 12 | 30 |
你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是______.
(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是______.
(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.
查看答案