等边△ABC边长为6,P为BC边上一点,∠MPN=60°,且PM、PN分别于边AB、AC交于点E、F.
(1)如图1,当点P为BC的三等分点,且PE⊥AB时,判断△EPF的形状;
(2)如图2,若点P在BC边上运动,且保持PE⊥AB,设BP=x,四边形AEPF面积的y,求y与x的函数关系式,并写出自变量x的取值范围;
(3)如图3,若点P在BC边上运动,且∠MPN绕点P旋转,当CF=AE=2时,求PE的长.
考点分析:
相关试题推荐
已知关于x的一元二次方程x
2+px+q+1=0的一个实数根为2.
(1)用含p的代数式表示q;
(2)求证:抛物线y=x
2+px+q与x轴有两个交点;
(3)设抛物线y
1=x
2+px+q的顶点为M,与y轴的交点为E,抛物线y
2=x
2+px+q+1顶点为N,与y轴的交点为F,若四边形FEMN的面积等于2,求p的值.
查看答案
阅读下列材料:
问题:如图1,在正方形ABCD内有一点P,PA=
,PB=
,PC=1,求∠BPC的度数.
小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连接PP′.
请你参考小明同学的思路,解决下列问题:
(1)图2中∠BPC的度数为______;
(2)如图3,若在正六边形ABCDEF内有一点P,且PA=
,PB=4,PC=2,则∠BPC的度数为______,正六边形ABCDEF的边长为______
查看答案
如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°.
(1)试判断CD与⊙O的位置关系,并证明你的结论;
(2)若⊙O的半径为3,sin∠ADE=
,求AE的值.
查看答案
如图,在梯形ABCD中,AD∥BC,BD是∠ABC的平分线.
(1)求证:AB=AD;
(2)若∠ABC=60°,BC=3AB,求∠C的度数.
查看答案
某中学的地理兴趣小组在本校学生中开展主题为“地震知识知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:
等级 | 非常了解 | 比较了解 | 基本了解 | 不太了解 |
频数 | 40 | 120 | n | 4 |
频率 | 0.2 | m | 0.18 | 0.02 |
(1)表中的m的值为______,n的值为______
(2)根据表中的数据,请你计算“非常了解”的频率在下图中所对应的扇形的圆心角的度数,并补全扇形统计图.
(3)若该校有1500名学生,请根据调查结果估计这些学生中“比较了解”的人数约为多少?
查看答案