满分5 > 初中数学试题 >

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0...

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③a-b+c<0;④a+c>0,其中正确结论的个数为( )
manfen5.com 满分网
A.4个
B.3个
C.2个
D.1个
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断. 【解析】 ①由抛物线的开口方向向下可推出a<0, 因为对称轴在y轴右侧,对称轴为x=>0, 而a<0,所以b>0, 由抛物线与y轴的交点在y轴的正半轴上,可知c>0,故abc<0,错误; ②由图象可知:对称轴x=>0且对称轴x=<1,所以2a+b<0,正确; ③由图象可知:当x=-1时,y>0 ∴a-b+c<0,错误; ④当x=-1时,y>0,∴a-b+c>0,a+c>b,而b>0,所以a+c>0,故正确. 综上可得:②④正确. 故选C.
复制答案
考点分析:
相关试题推荐
已知点A(m2-5,2m+3)在第三象限角平分线上,则m=( )
A.4
B.-2
C.4或-2
D.-1
查看答案
如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,求出P、Q两点的坐标.

manfen5.com 满分网 查看答案
等边△ABC边长为6,P为BC边上一点,∠MPN=60°,且PM、PN分别于边AB、AC交于点E、F.
(1)如图1,当点P为BC的三等分点,且PE⊥AB时,判断△EPF的形状;
(2)如图2,若点P在BC边上运动,且保持PE⊥AB,设BP=x,四边形AEPF面积的y,求y与x的函数关系式,并写出自变量x的取值范围;
(3)如图3,若点P在BC边上运动,且∠MPN绕点P旋转,当CF=AE=2时,求PE的长.
manfen5.com 满分网
查看答案
已知关于x的一元二次方程x2+px+q+1=0的一个实数根为2.
(1)用含p的代数式表示q;
(2)求证:抛物线y=x2+px+q与x轴有两个交点;
(3)设抛物线y1=x2+px+q的顶点为M,与y轴的交点为E,抛物线y2=x2+px+q+1顶点为N,与y轴的交点为F,若四边形FEMN的面积等于2,求p的值.
查看答案
阅读下列材料:
问题:如图1,在正方形ABCD内有一点P,PA=manfen5.com 满分网,PB=manfen5.com 满分网,PC=1,求∠BPC的度数.
小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连接PP′.
请你参考小明同学的思路,解决下列问题:
(1)图2中∠BPC的度数为______
(2)如图3,若在正六边形ABCDEF内有一点P,且PA=manfen5.com 满分网,PB=4,PC=2,则∠BPC的度数为______,正六边形ABCDEF的边长为______
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.