满分5 > 初中数学试题 >

在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△P...

在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米
(1)求∠DCB的度数及梯形ABCD与△PQR的高?manfen5.com 满分网
(2)当t=4时,求S的值;
(3)当4≤t≤10,求S与t的函数关系式,并求出S的最大值.
(1)作辅助线:过点A作AE∥CD,AF⊥BC于F,即可求得:四边形ADCE是平行四边形,利用等腰梯形与平行四边形的性质,即可求得AB=AE=BE,则可求得∠B的度数,由三角函数即可求得梯形ABCD的高的值;在等腰三角形PQR中,由三线合一与三角函数的性质,即可求得△PQR的高; (2)首先判定当t=4时,点B与点Q重合,点P与点D重合,则求△BDC的面积即可; (3)分别从4≤x<6与6≤x≤10去分析,求得各自的函数解析式,再分析各种情况下的最大值即可求得答案. 【解析】 (1)过点A作AE∥CD,AF⊥BC于F, ∵AD∥BC, ∴四边形ADCE是平行四边形, ∴EC=AD=2cm,AE=CD=2cm, ∴BE=BC-EC=4-2=2(cm), ∵AB=2cm,AE=2cm, ∴AB=AE=BE, ∴∠B=60°; ∴sin∠B=sin60°==, ∴AF=cm, ∴梯形ABCD的高为cm; 过点P作PG⊥QR于G, ∵PQ=PR, ∴∠QPG=∠QPR=×120°=60°,QG=QR=×6=3cm, ∴tan∠QPG=tan60°==, ∴PG=cm, ∴△PQR的高为cm; (2)当t=4时,CQ=4cm, 过点A作AE⊥BC于E,过点D作DF⊥BC于F, ∵AE=DF=cm,∠AEB=∠DFC=90°,AB=CD, ∴△ABE≌△DFC, ∴BE=CF, ∵EF=AD=2cm,BC=4cm, ∴BE=CF=1cm, ∴点D与点P重合, ∴S△BDC=BC•DF=×4×=2(cm2); (3)当4≤x<6时,P在线段AD上,作KH⊥QR, ∵∠Q=30°,∠1=60°, ∴∠2=∠1-∠Q=30°, ∠3=∠2=30°, ∴QB=BM=QC-BC=t-4, ∵∠R=∠Q=30°,∠DCB=∠ABC=60°, ∴∠CKR=∠DCB-∠R=30°=∠R, ∴KC=CR=6-t, ∴HK=KC sin60°=(6-t) ∴同理:MN=(t-4), ∴S=S△PQR-S△BQM-S△CRK=QR•PG-BQ•EM-CR•FN =×6×-×(t-4)2-×(6-t)2 =-t2+5t-10, ∵a=-<0,开口向下, ∴S有最大值, 当t=-=5时,S最大值为; 当6≤x≤10时,P在线段DA的延长线上, ∵∠1=60°,∠2=30°, ∴∠3=90° ∴RC=t-6,BR=4-RC=4-(t-6)=10-t, ∴TB=BR=,TR=BR=(10-t), ∴S=TB•TR=××(10-t)=t2-t+, 当a>0时,开口向上,-=10, ∴t=6时,S最大值为2; 综上,t=5时,S最大值为.
复制答案
考点分析:
相关试题推荐
如图,在矩形ABCD中,B(16,12),E、F分别是OC、BC上的动点,EC+CF=8.
(1)当∠AFB=60°时,△ABF沿着直线AF折叠,折叠后,落在平面内G点处,求G点的坐标.
(2)当F运动到什么位置时,△AEF的面积最小,最小为多少?
(3)当△AEF的面积最小时,直线EF与y轴相交于点M,P点在x轴上,⊙P与直线EF相切于点M,求P点的坐标.

manfen5.com 满分网 查看答案
如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D,E分别是边AB,AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动.设BQ=x,QR=y.
(1)求点D到BC的距离DH的长;
(2)求y关于x的函数关系式(不要求写出自变量的取值范围);
(3)是否存在点P,使△PQR为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.
manfen5.com 满分网
查看答案
如图,已知平面直角坐标系xoy中,有一矩形纸片OABC,O为坐标原点,AB∥x轴,B(3,manfen5.com 满分网),现将纸片按如图折叠,AD,DE为折痕,∠OAD=30度.折叠后,点O落在点O1,点C落在线段AB点C1处,并且DO1与DC1在同一直线上.
(1)求折痕AD所在直线的解析式;
(2)求经过三点O,C1,C的抛物线的解析式;
(3)若⊙P的半径为R,圆心P在(2)的抛物线上运动,⊙P与两坐标轴都相切时,求⊙P半径R的值.

manfen5.com 满分网 查看答案
如图①,在边长为8manfen5.com 满分网cm正方形ABCD中,E,F是对角线AC上的两个动点,它们分别从点A,点C同时出发,沿对角线以1cm/s同速度运动,过E作EH垂直AC交的直角边于H;过F作FG垂直AC交Rt△ACD的直角边于G,连接HG,EB.设HE,EF,FG,GH围成的图形面积为S1,AE,EB,BA围成的图形面积为S2(这里规定:线段的面积为0).E到达C,F到达A停止.若E的运动时间为xs,解答下列问题:
(1)当0<x<8时,直接写出以E,F,G,H为顶点的四边形是什么四边形,并求x为何值时,S1=S2
(2)①若y是S1与S2的和,求y与x之间的函数关系式.(图②为备用图)
②求y的最大值.
manfen5.com 满分网
查看答案
如图①,Rt△ABC中,∠B=90°∠CAB=30°,AC⊥x轴.它的顶点A的坐标为(10,0),顶点B的坐标为manfen5.com 满分网,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.
(1)求∠BAO的度数.(直接写出结果)
(2)当点P在AB上运动时,△OPQ的面积S与时间t(秒)之间的函数图象为抛物线的一部分(如图②),求点P的运动速度.
(3)求题(2)中面积S与时间manfen5.com 满分网之间的函数关系式,及面积S取最大值时点P的坐标.
(4)如果点P,Q保持题(2)中的速度不变,当t取何值时,PO=PQ,请说明理由.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.