满分5 > 初中数学试题 >

问题背景 (1)如图,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E...

问题背景
(1)如图,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E作EF∥AB交BC于点F.请按图示数据填空:
四边形DBFE的面积S=______,△EFC的面积S1=______,△ADE的面积S2=______
探究发现
(2)在(1)中,若BF=a,FC=b,DE与BC间的距离为h.请证明S2=4S1S2
拓展迁移
(3)如图,▱DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,试利用(2)中的结论求△ABC的面积.
manfen5.com 满分网
(1)四边形DBFE是平行四边形,利用底×高可求面积;△EFC的面积利用底×高的一半计算;△ADE的面积,可以先过点A作AH⊥BC,交DE于G,交BC于H,即AG是△ADE的高,AH是△ABC的高,利用平行线分线段成比例定理的推论,可知△ADE∽△ABC,利用相似三角形的面积比等于相似比的平方,可求AG,再利用三角形的面积公式计算即可; (2)由于DE∥BC,EF∥AB,可知四边形DBFE是▱,同时,利用平行线分线段成比例定理的推论,可知△ADE∽△ABC,△EFC∽△ABC,从而易得△ADE∽△EFC,利用相似三角形的面积比等于相似比的平方,可得S1:S2=a2:b2,由于S1=bh,那么可求S2,从而易求4S1S2,又S=ah,容易证出结论; (3)过点G作GH∥AB交BC于H,则四边形DBHG为平行四边形,容易证出△DBE≌△GHF,那么△GHC的面积等于8,再利用(2)中的结论,可求▱DBHG的面积,从而可求△ABC的面积. (1)【解析】 S=6,S1=9,S2=1; (2)证明:∵DE∥BC,EF∥AB, ∴四边形DBFE为平行四边形,∠AED=∠C,∠A=∠CEF, ∴△ADE∽△EFC, ∴, ∵, ∴, ∴, 而S=ah,∴S2=4S1S2; (3)【解析】 过点G作GH∥AB交BC于H,则四边形DBHG为平行四边形, ∴∠GHC=∠B,BD=HG,DG=BH, ∵四边形DEFG为平行四边形, ∴DG=EF, ∴BH=EF ∴BE=HF, ∴△DBE≌△GHF, ∴△GHC的面积为5+3=8, 由(2)得,▱DBHG的面积为, ∴△ABC的面积为2+8+8=18. (说明:未利用(2)中的结论,但正确地求出了△ABC的面积,给2分)
复制答案
考点分析:
相关试题推荐
如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.
(1)判断直线BD和⊙O的位置关系,并给出证明;
(2)当AB=10,BC=8时,求BD的长.

manfen5.com 满分网 查看答案
某儿童服装店欲购进A、B两种型号的儿童服装,经调查:B型号童装的进货单价是A型号童装进货单价的2倍,购进A型号童装60件和B型号童装40件共用2100元.
(1)求A、B两种型号童装的进货单价各是多少元?
(2)若该店每销售1件A型号童装可获利4元,每销售1件B型号童装可获利9元,该店准备用不超过6300元购进A、B两种型号童装共300件,且这两种型号童装全部售出后总获利不低于1795元,问应该怎样进货,才能使总获利最大,最大获利为多少元?
查看答案
如图,小岛A在港口P的南偏西45°方向,距离港口70海里处.甲船从A出发,沿AP方向以每小时20海里的速度驶向港口P;乙船从港口P出发,沿着南偏东60°方向,以每小时15海里的速度驶离港口.若两船同时出发.
(1)几小时后两船与港口P的距离相等?
(2)几小时后乙船在甲船的正东方向?
(最后结果保留一位小数,参考数据:manfen5.com 满分网≈1.4,manfen5.com 满分网≈1.7)

manfen5.com 满分网 查看答案
如图:在菱形ABCD中,E、F为BC上两点,且BE=CF,AF=DE.
求证:(1)△ABF≌△DCE;
(2)四边形ABCD是正方形.

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网-manfen5.com 满分网,其中a=manfen5.com 满分网.(结果精确到0.01)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.