满分5 > 初中数学试题 >

关于二次函数y=2x2-mx+m-2,以下结论:①不论m取何值,抛物线总经过点(...

关于二次函数y=2x2-mx+m-2,以下结论:①不论m取何值,抛物线总经过点(1,0);②抛物线与x轴一定有两个交点;③若m>6,抛物线交x轴于A、B两点,则AB>1;④抛物线的顶点在y=-2(x-1)2图象上.上述说法错误的序号是   
①把二次函数y=2x2-mx+m-2转化成y=2x2-2+(1-x)m,令x=1,y=0,判断出①,②令2x2-mx+m-2=0,求出根的判别式△是不是大于0,判断②,③令2x2-mx+m-2=0,求出抛物线与x轴的两个交点坐标,然后求出|AB|的长,即可判断③,④根据顶点坐标式求出抛物线的顶点,然后把顶点代入y=-2(x-1)2,判断④. 【解析】 ①二次函数y=2x2-mx+m-2=2x2-2+(1-x)m,当x=1时,y=0,故可知抛物线总经过点(1,0),故①正确,不符合题意, ②令y=2x2-mx+m-2=0,求△=m2-8m+16=(m-4)2≥0,抛物线与x轴可能有两个交点,也可能有一个交点,故②错误,符合题意, ③令2x2-mx+m-2=0,解得x1=1,x2=,又知m>6,即x2>2,故可知|AB|=|x2-x1|>1,故③正确,不符合题意, ④y=2x2-mx+m-2=2(x2-x+)-+m-2=2(x-)2-+m-2,抛物线的顶点坐标为(,-+m-2),把点(,-+m-2)代入y=-2(x-1)2等式成立,即抛物线的顶点在y=-2(x-1)2图象上,故④正确,不符合题意, 符合题意的选项只有②, 故答案为②.
复制答案
考点分析:
相关试题推荐
如图,直线l1⊥x轴于点(1,0),直线l2⊥x轴于点(2,0),直线l3⊥x轴于点(3,0),…直线ln⊥x轴于点(n,0).函数y=x的图象与直线l1,l2,l3,…ln分别交于点A1,A2,A3,…An;函数y=2x的图象与直线l1,l2,l3,…ln分别交于点B1,B2,B3,…Bn.如果△OA1B1的面积记作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…四边形An-1AnBnBn-1的面积记作Sn,那么S2012=   
manfen5.com 满分网 查看答案
近期随着国家抑制房价新政策的出台,某楼盘房价连续两次下跌,由原来的每平方米10000元降至每平方米8100元,设每次降价的百分率相同,则降价百分率为    查看答案
已知点P(a-1,5)和点Q(2,b-1)关于x轴对称,则(a+b)2012=    查看答案
在矩形纸片ABCD中,AD=12cm,现将这张纸片按下列图示方式折叠,AE是折痕.
(1)如图1,P,Q分别为AD,BC的中点,点D的对应点F在PQ上,求PF和AE的长;
(2)①如图2,DP=manfen5.com 满分网AD,CQ=manfen5.com 满分网BC,点D的对应点F在PQ上,求AE的长;
②如图3,DP=manfen5.com 满分网AD,CQ=manfen5.com 满分网BC,点D的对应点F在PQ上.直接写出AE的长(用含n的代数式表示).
manfen5.com 满分网
查看答案
如图,一次函数y=kx+3的图象分别交x轴、y轴于点C、点D,与反比例函数manfen5.com 满分网的图象在第四象限的相交于点P,并且PA⊥x轴于点A,PB⊥y轴于点B,已知B(0,-6),且S△DBP=27
(1)求上述一次函数与反比例函数的表达式;
(2)求一次函数与反比例函数的另一个交点坐标.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.