如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为______,线段CF、BD的数量关系为______;
②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.
考点分析:
相关试题推荐
把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm把三角板DCE绕点C顺时针旋转15°得到△D
1CE
1(如图乙).这时AB与CD
1相交于点O,与D
1E
1相交于点F.
(1)求∠OFE
1的度数;
(2)求线段AD
1的长;
(3)若把三角形D
1CE
1绕着点C顺时针再旋转30°得△D
2CE
2,这时点B在△D
2CE
2的内部,外部,还是边上?证明你的判断.
查看答案
列方程或方程组解应用题:
2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心.“一方有难、八方支援”,某厂计划加工1500顶帐篷支援灾区,在加工了300顶帐篷后,由于情况紧急,该厂又增加了人员进行生产,将工作效率提高到原来的1.5倍,结果提前4天完成任务.问该厂原来每天加工多少顶帐篷?
查看答案
某校学生会准备调查本校初中三年级同学每天(除课间操外)课外锻炼的平均时间.
(1)确定调查方式时,①甲同学说:“我到1班去调查全体同学”;②乙同学说:“我到体育场上去询问参加锻炼的同学”;③丙同学说:“我到初中三年级每个班去随机调查一定数量的同学”.上面同学说的三种调查方式中最为合理的是______(填写序号);
(2)他们采用了最为合理的调查方式收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请将图1补充完整;
(3)若该校初中三年级共有240名同学,则其中每天(除课间操外)课外锻炼平均时间不大于20分钟的人数约为______人.
(注:图2中相邻两虚线形成的圆心角为30°)
查看答案
如图,点D是⊙O直径CA的延长线上一点,点B在⊙O上,且AB=AD=AO.
(1)求证:BD是⊙O的切线;
(2)若点E是劣弧BC上一点,弦AE与BC相交于点F,且CF=9,cos∠BFA=
,求EF的长.
查看答案
如图1,矩形纸片ABCD中,AB=4,BC=4
,将矩形纸片沿对角线AC向下翻折,点D落在点D′处,连接B D′,如图2,求线段BD′的长.
查看答案