满分5 > 初中数学试题 >

如图,△ABC内接于⊙O,∠A所对弧的度数为120度.∠ABC、∠ACB的角平分...

如图,△ABC内接于⊙O,∠A所对弧的度数为120度.∠ABC、∠ACB的角平分线分别交于AC、AB于点D、E,CE、BD相交于点F.以下四个结论:①cos∠BFE=manfen5.com 满分网;②BC=BD;③EF=FD;④BF=2DF.其中结论一定正确的序号数是   
manfen5.com 满分网
①由于∠A所对弧的度数为120°,根据圆周角定理可知∠A=60°;在△ABC中,∠ABC+∠ACB=180°-∠A=120°,即∠FBC+∠FCB=60°,而∠BFE正好是△BFC的外角,即∠BFE=∠FBC+∠FCB=60°,即cos∠BFE=;故正确; ②若BC=BD,需满足一个条件:∠BCD=∠BDC,且看这两个角的表达式:∠BCD=180°-∠A-2∠DBA=120°-2∠DBA;∠BDC=∠DBA+∠A=60°+∠DBA;联立两式,可得∠DBA=20°;此时∠ABC=40°,而没有任何条件可以说明∠ABC的度数是40°,即可得出本选项错误. ③由于F是∠ABC和∠ACB角平分线的交点,因此F是△ABC的内心,可过F作AB、AC的垂线,通过证构建的直角三角形全等,得出FE=FD的结论,因结论正确; ④若BF=2DF,则F是△ABC的重心,即三边中线的交点,而题目给出的条件是F是△ABC的内心,显然两者的结论相矛盾,因此不正确. 所以本题正确的结论:①③. 【解析】 ∵∠A所对弧的度数为120° ∴∠A=60° ∴∠ABC+∠BCA=180°-∠A=120° ∵∠ABC、∠ACB的角平分线分别是BD,CE ∴∠CBF+∠BCF=(∠ABC+∠BCA)=60°=∠BFE ∴cos∠BFE=, ∴即cos∠BFE=;故①正确; ∵∠BDC=∠A+∠ABC=60°+∠DBA ∠BCA=180°-∠A-2∠DBA=120°-2∠DBA 若BC=BD成立,则应有∠BDC=∠BCA 应有60°+∠DBA=120°-2∠DBA, 即∠DBA=20°, 此时∠ABC=40°, ∴∠BCD=∠BDC=80°, 而根据题意,没有条件可以说明∠ABC是40°, 故②错误; ∵点F是△ABC内心,作FW⊥AC,FS⊥AB 则FW=FS,∠FSE=∠FWD=90°∠EFD=∠SFW=120° ∴∠SFE=∠WFD,△FSE≌△WFD ∴FD=FE,故③正确; 由于点F是内心而不是各边中线的交点,故BF=2DF不一定成立,因此④不正确. 因此本题正确的结论为①③. 故答案为:①③.
复制答案
考点分析:
相关试题推荐
若实数a、b满足a2=2a+1,b2=2b+1,则a+b=    查看答案
如图,矩形AOCB的两边OC、OA分别位x轴、y轴上,点B的坐标为B(manfen5.com 满分网,5),D是AB边上的一点.将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图象上,那么该函数的解析式是   
manfen5.com 满分网 查看答案
如图,在正方形ABCD中,点O为对角线AC的中点,过点0作射线OM、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P.则下列结论中:
(1)图形中全等的三角形只有两对;
(2)正方形ABCD的面积等于四边形OEBF面积的4倍;
(3)BE+BF=manfen5.com 满分网0A;
(4)AE2+CF2=20P•OB.
正确的结论有( )个.
manfen5.com 满分网
A.1
B.2
C.3
D.4
查看答案
如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出四个结论:①b2>4ac;②2a+b=0;③a-b+c=0;④5a<b.其中正确结论是( )
manfen5.com 满分网
A.②④
B.①④
C.②③
D.①③
查看答案
抛物线manfen5.com 满分网与x轴的两个不同交点是点O和点A,顶点B在直线manfen5.com 满分网上,则关于△OAB的判断正确的是( )
A.等腰三角形
B.直角三角形
C.等边三角形
D.等腰直角三角形
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.