如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB
1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C出发沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF上AC交射线BB
1于F,G是EF中点,连接DG.设点D运动的时间为t秒.
(1)当t为何值时,AD=AB,并求出此时DE的长度;
(2)当△DEG与△ACB相似时,求t的值;
(3)以DH所在直线为对称轴,线段AC经轴对称变换后的图形为A′C′.
①当t>
时,连接C′C,设四边形ACC′A′的面积为S,求S关于t的函数关系式;
②当线段A′C′与射线BB′,有公共点时,求t的取值范围(写出答案即可).
查看答案
初三(1)班数学兴趣小组在社会实践活动中,进行了如下的课题研究:用一定长度的铝合金材料,将它设计成外观为长方形的三种框架,使长方形框架面积最大.
小组讨论后,同学们做了以下三种试验:
请根据以上图案回答下列问题:
(1)在图案(1)中,如果铝合金材料总长度(图中所有黑线的长度和)为6米,当AB为1米,长方形框架ABCD的面积是______m
2;
(2)在图案(2)中,如果铝合金材料总长度为6米,设AB为x米,长方形框架ABCD的面积为S=______(用含x的代数式表示);当AB=______时米,长方形框架ABCD的面积S最大;在图案(3)中,如果铝合金材料总长度为l米,设AB为x米,当AB是多少米时,长方形框架ABCD的面积S最大.
查看答案