满分5 > 初中数学试题 >

如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A,D在抛物线上,且A...

如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A,D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动.(点P异于点O)
(1)求此抛物线的解析式.
(2)过点P作CB所在直线的垂线,垂足为点R,
①求证:PF=PR;
②是否存在点P,使得△PFR为等边三角形?若存在,求出点P的坐标;若不存在,请说明理由;
③延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为S,试判断△RSF的形状.

manfen5.com 满分网
(1)根据题意能判断出点O是矩形ABCD的对角线交点,因此D、B关于原点对称,A、B关于x轴对称,得到A、D的坐标后,利用待定系数法可确定抛物线的解析式. (2)①首先根据抛物线的解析式,用一个未知数表示出点P的坐标,然后表示出PF、RF的长,两者进行比较即可得证; ②首先表示RF的长,若△PFR为等边三角形,则满足PF=PR=FR,列式求解即可; ③根据①的思路,不难看出QF=QS,若连接SF、RF,那么△QSF、△PRF都是等腰三角形,先用∠SQF、∠RPF表示出∠DFS、∠RFP的和,用180°减去这个和值即可判断出△RSF的形状. 【解析】 (1)∵抛物线的顶点为坐标原点, ∴A、D关于抛物线的对称轴对称; ∵E是AB的中点, ∴O是矩形ABCD对角线的交点,又B(2,1) ∴A(2,-1)、D(-2,-1); 由于抛物线的顶点为(0,0),可设其解析式为:y=ax2,则有: 4a=-1,a=- ∴抛物线的解析式为:y=-x2. (2)①证明:由抛物线的解析式知:P(a,-a2),而R(a,1)、F(0,-1),则: 则:PF===a2+1,PR=1-(-a2)=a2+1. ∴PF=PR. ②由①得:RF=; 若△PFR为等边三角形,则RF=PF=PR,得: =a2+1,即:a4-a2-3=0,得: a2=-4(舍去),a2=12; ∴a=±2,-a2=-3; ∴存在符合条件的P点,坐标为(2,-3)、(-2,-3). ③同①可证得:QF=QS; 在等腰△SQF中,∠1=(180°-∠SQF); 同理,在等腰△RPF中,∠2=(180°-∠RPF); ∵QS⊥BC、PR⊥BC, ∴QS∥PR,∠SQP+∠RPF=180° ∴∠1+∠2=(360°-∠SQF-∠RPF)=90° ∴∠SFR=180°-∠1-∠2=90°,即△SFR是直角三角形.
复制答案
考点分析:
相关试题推荐
如图,A、B两点的坐标分别是(8,0)、(0,6),点P由点B出发沿BA方向向点A作匀速直线运动,速度为每秒3个单位长度,点Q由A出发沿AO(O为坐标原点)方向向点O作匀速直线运动,速度为每秒2个单位长度,连接PQ,若设运动时间为t(0<t<manfen5.com 满分网)秒.解答如下问题:
(1)当t为何值时,PQ∥BO?
(2)设△AQP的面积为S,
①求S与t之间的函数关系式,并求出S的最大值;
②若我们规定:点P、Q的坐标分别为(x1,y1),(x2,y2),则新坐标(x2-x1,y2-y1)称为“向量PQ”的坐标.当S取最大值时,求“向量PQ”的坐标.

manfen5.com 满分网 查看答案
若一次函数manfen5.com 满分网和反比例函数manfen5.com 满分网的图象都经过点C(1,1).
(1)求一次函数的表达式;
(2)已知点A在第三象限,且同时在两个函数图象上,求点A的坐标.
查看答案
我市某中学为调查本校学生使用零花钱的情况,随机调查了50名同学,如图是根据调查所得数据绘制的统计图的一部分.
manfen5.com 满分网
请根据以上信息,解答下列问题:
(1)将统计图补充完整;
(2)若该校共有1000名学生,根据以上调查结果估计,该校全体学生平均每天用去多少元零花钱?
(3)如果将全校1000名学生一周(7天)的零花钱节省下来,全部捐给灾区学校购买课桌椅,每套课桌椅150元,共可以为灾区学校购买多少套这样的课桌椅?
查看答案
若方程x2-x-1=0的两实根为a、b,求manfen5.com 满分网的值.
查看答案
如图,在△ABC与△ABD中,BC=BD,∠ABC=∠ABD.点E为BC中点,点F为BD中点,连接AE,AF.求证:AE=AF.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.