连接OD,则OD⊥AC、OD∥CB,易证得OD是△ABC的中位线,则OD=3;由此可求得OF、BF的长;根据OD∥CB,可证得△ODF、△BFG都是等腰三角形,所以BF=BG=3-3,再由CG=BC+BG即可求出CG的长.
【解析】
连接OD,则OD⊥AC;
∵∠C=90°,
∴OD∥CB;
∵O是AB的中点,
∴OD是△ABC的中位线,即OD=BC=3;
∵AC=BC=6,∠C=90°,
∴AB=6,则OB=3,
∵OD∥CG,
∴∠ODF=∠G;
∵OD=OF,则∠ODF=∠OFD,
∴∠BFG=∠OFD=∠G,
∴BF=BG=OB-OF=3-3,
∴CG=BC+BG=6+3-3=3+3.