如图,⊙O的半径为1,等腰直角三角形ABC的顶点B的坐标为(
,0),∠CAB=90°,AC=AB,顶点A在⊙O上运动.
(1)当点A在x轴上时,求点C的坐标;
(2)当点A运动到x轴的负半轴上时,试判断直线BC与⊙O位置关系,并说明理由;
(3)设点A的横坐标为x,△ABC的面积为S,求S与x之间的函数关系式,并求出S的最大值与最小值;
(4)当直线AB与⊙O相切时,求AB所在直线对应的函数关系式.
考点分析:
相关试题推荐
(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;
(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.
查看答案
已知:关于x的一元二次方程(m-1)x
2+(m-2)x-1=0(m为实数)
(1)若方程有两个不相等的实数根,求m的取值范围;
(2)在(1)的条件下,求证:无论m取何值,抛物线y=(m-1)x
2+(m-2)x-1总过x轴上的一个固定点;
(3)关于x的一元二次方程(m-1)x
2+(m-2)x-1=0有两个不相等的整数根,把抛物线y=(m-1)x
2+(m-2)x-1向右平移3个单位长度,求平移后的解析式.
查看答案
库尔勒某乡A,B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这些香梨运到C,D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨,A,B两村运香梨往两仓库的运输费用分别为y
A元,y
B元.
(1)请填写下表,并求出y
A,y
B与x之间的函数关系式;
| C | D | 总计 |
A | x吨 | | 200吨 |
B | | | 300吨 |
总计 | 240吨 | 260吨 | 500吨 |
(2)当x为何值时,A村的运费较少?
(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.
查看答案
已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.
①求证:CD=AN;
②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.
查看答案
某学校开展丰富多彩的体育活动,新开设了排球、篮球、羽毛球、体操课,学生可根据自己的爱好任选其中一项.老师根据学生报名情况进行了统计,并绘制了下面不完整的扇形统计图和条形图.请你结合图中的信息,解答下列问题:
(1)求该校学生报名占报名数;
(2)选排球的人数占报名总人数的百分之几?
(3)将条形图补充完整.
查看答案