满分5 >
初中数学试题 >
林老师给出一个函数,甲、乙、丙三位同学分别指出了这个函数的一个性质: 甲:函数的...
林老师给出一个函数,甲、乙、丙三位同学分别指出了这个函数的一个性质:
甲:函数的图象经过第二象限;
乙:函数的图象经过第四象限;
丙:在每一个象限内,y值随x值增大而增大.
根据他们的叙述,林老师给出的这个函数可能是( )
A.y=-3
B.y=-
C.y=x-3
D.y=x
2-3
考点分析:
相关试题推荐
若圆锥的底面半径为3cm,母线长为6cm,则圆锥的侧面积为( )
A.36πcm
2B.27πcm
2C.18πcm
2D.9πcm
2
查看答案
甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数均是8.9环,方差分别是S
甲2=0.55,S
乙2=0.65,S
丙2=0.50,S
丁2=0.45,其中成绩最稳定的是( )
A.甲
B.乙
C.丙
D.丁
查看答案
如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=-x
2+bx+c经过坐标原点O和x轴上另一点E(4,0)
(1)当x取何值时,该抛物线取最大值?该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=
时,判断点P是否在直线ME上,并说明理由;
②以P、N、C、D为顶点的多边形面积是否可能为5?若有可能,求出此时N点的坐标;若无可能,请说明理由.
查看答案
如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=
BD,EN=
CE,得到图③,请解答下列问题:
(1)若AB=AC,请探究下列数量关系:
①在图②中,BD与CE的数量关系是______;
②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;
(2)若AB=k•AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明.
查看答案
今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:
周数x | 1 | 2 | 3 | 4 |
价格y(元/kg) | 2 | 2.2 | 2.4 | 2.6 |
进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=-
x
2+bx+c.
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x的函数关系式,并求出5月份y与x的函数关系式;
(2)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=
x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=
x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?
(3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a%,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8a%.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a的整数值.
(参考数据:37
2=1369,38
2=1444,39
2=1521,40
2=1600,41
2=1681)
查看答案