满分5 > 初中数学试题 >

如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连...

如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=manfen5.com 满分网CG2;③若AF=2DF,则BG=6GF.其中正确的结论有    .(填序号)
manfen5.com 满分网
①先证明△ABD为等边三角形,根据“SAS”证明△AED≌△DFB; ②证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S四边形BCDG=S四边形CMGN,易求后者的面积. ③过点F作FP∥AE于P点,根据题意有FP:AE=DF:DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF. 【解析】 ①∵ABCD为菱形,∴AB=AD. ∵AB=BD,∴△ABD为等边三角形. ∴∠A=∠BDF=60°. 又∵AE=DF,AD=BD, ∴△AED≌△DFB,故本小题正确; ②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD, 即∠BGD+∠BCD=180°, ∴点B、C、D、G四点共圆, ∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°. ∴∠BGC=∠DGC=60°. 过点C作CM⊥GB于M,CN⊥GD于N. 则△CBM≌△CDN,(AAS) ∴S四边形BCDG=S四边形CMGN. S四边形CMGN=2S△CMG, ∵∠CGM=60°, ∴GM=CG,CM=CG, ∴S四边形CMGN=2S△CMG=2××CG×CG=CG2,故本小题正确; ③过点F作FP∥AE于P点.                   ∵AF=2FD, ∴FP:AE=DF:DA=1:3, ∵AE=DF,AB=AD, ∴BE=2AE, ∴FP:BE=1:6=FG:BG, 即BG=6GF,故本小题正确. 综上所述,正确的结论有①②③. 故答案为:①②③.
复制答案
考点分析:
相关试题推荐
如图所示,平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD、BC于点M、N,若△CON的面积为2,△DOM的面积为4,则△AOB的面积为   
manfen5.com 满分网 查看答案
如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一适当的点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=20m,则AB=    m.
manfen5.com 满分网 查看答案
为了估计不透明的袋子里装有多少白球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记,那么你估计袋中大约有    个白球. 查看答案
当x=    时,分式manfen5.com 满分网无意义. 查看答案
如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为( )
manfen5.com 满分网
A.manfen5.com 满分网:1
B.manfen5.com 满分网:1
C.5:3
D.不确定
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.