满分5 > 初中数学试题 >

如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE....

如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.
(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形.

manfen5.com 满分网
(1)首先Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又因为△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后即可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF; (2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形. 证明:(1)∵Rt△ABC中,∠BAC=30°, ∴AB=2BC, 又∵△ABE是等边三角形,EF⊥AB, ∴AB=2AF ∴AF=CB, 在Rt△AFE和Rt△BCA中, , ∴△AFE≌△BCA(HL), ∴AC=EF; (2)由(1)知道AC=EF, 而△ACD是等边三角形, ∴∠DAC=60° ∴EF=AC=AD,且AD⊥AB, 而EF⊥AB, ∴EF∥AD, ∴四边形ADFE是平行四边形.
复制答案
考点分析:
相关试题推荐
(1)计算:manfen5.com 满分网
(2)先化简,再求值:(2a-b)2-2a(a-b)-(2a2+b2),其中a=manfen5.com 满分网+1,b=manfen5.com 满分网-1.
查看答案
如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2).若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P在移动的过程中,使△PBF成为直角三角形,则点F的坐标是   
manfen5.com 满分网 查看答案
如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=manfen5.com 满分网CG2;③若AF=2DF,则BG=6GF.其中正确的结论有    .(填序号)
manfen5.com 满分网 查看答案
如图所示,平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD、BC于点M、N,若△CON的面积为2,△DOM的面积为4,则△AOB的面积为   
manfen5.com 满分网 查看答案
如图,A、B两处被池塘隔开,为了测量A、B两处的距离,在AB外选一适当的点C,连接AC、BC,并分别取线段AC、BC的中点E、F,测得EF=20m,则AB=    m.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.