满分5 > 初中数学试题 >

问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其...

问题情境:将一副直角三角板(Rt△ABC和Rt△DEF)按图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,试判断线段OM与ON的数量关系,并说明理由.
探究展示:小宇同学展示出如下正确的解法:
【解析】
OM=ON,证明如下:
连接CO,则CO是AB边上中线,
∵CA=CB,∴CO是∠ACB的角平分线.(依据1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依据2)
反思交流:
(1)上述证明过程中的“依据1”和“依据2”分别是指:
依据1:______
依据2:______
(2)你有与小宇不同的思考方法吗?请写出你的证明过程.
拓展延伸:
(3)将图1中的Rt△DEF沿着射线BA的方向平移至如图2所示的位置,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM、ON,试判断线段OM、ON的数量关系与位置关系,并写出证明过程.

manfen5.com 满分网
(1)根据等腰三角形的性质和角平分线性质得出即可; (2)证△OMA≌△ONB(AAS),即可得出答案; (3)求出矩形DMCN,得出DM=CN,△MOC≌△NOB(SAS),推出OM=ON,∠MOC=∠NOB,得出∠MOC-∠CON=∠NOB-∠CON,求出∠MON=∠BOC=90°,即可得出答案. (1)【解析】 故答案为:等腰三角形三线合一(或等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合),角平分线上的点到角的两边距离相等.   (2)证明:∵CA=CB, ∴∠A=∠B, ∵O是AB的中点, ∴OA=OB. ∵DF⊥AC,DE⊥BC, ∴∠AMO=∠BNO=90°, ∵在△OMA和△ONB中 , ∴△OMA≌△ONB(AAS), ∴OM=ON.  (3)【解析】 OM=ON,OM⊥ON.理由如下: 连接OC, ∵∠ACB=∠DNB,∠B=∠B, ∴△BCA∽△BND, ∴=, ∵AC=BC, ∴DN=NB. ∵∠ACB=90°, ∴∠NCM=90°=∠DNC, ∴MC∥DN, 又∵DF⊥AC, ∴∠DMC=90°, 即∠DMC=∠MCN=∠DNC=90°, ∴四边形DMCN是矩形, ∴DN=MC, ∵∠B=45°,∠DNB=90°, ∴∠3=∠B=45°, ∴DN=NB, ∴MC=NB, ∵∠ACB=90°,O为AB中点,AC=BC, ∴∠1=∠2=45°=∠B,OC=OB(斜边中线等于斜边一半), 在△MOC和△NOB中 , ∴△MOC≌△NOB(SAS), ∴OM=ON,∠MOC=∠NOB, ∴∠MOC-∠CON=∠NOB-∠CON, 即∠MON=∠BOC=90°, ∴OM⊥ON.
复制答案
考点分析:
相关试题推荐
如图,已知AB为⊙O的直径,过⊙O上的点C的切线交AB的延长线于点E,AD⊥EC于点D且交⊙O于点F,连接BC,CF,AC.
(1)求证:BC=CF;
(2)若AD=6,DE=8,求BE的长;
(3)求证:AF+2DF=AB.

manfen5.com 满分网 查看答案
列方程或方程组解应用题:
据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.
查看答案
为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.
(1)求车架档AD的长;
(2)求车座点E到车架档AB的距离.
(结果精确到 1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321)manfen5.com 满分网
查看答案
九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,
月均用水量x(t)频数(户)频率
0<x≤560.12
5<x≤100.24
10<x≤15160.32
15<x≤20100.20
20<x≤254
25<x≤3020.04
请解答以下问题:
(1)把上面的频数分布表和频数分布直方图补充完整;
(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比.

manfen5.com 满分网 查看答案
如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=manfen5.com 满分网,BE=2manfen5.com 满分网.求CD的长和四边形ABCD的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.