由条件知△ABE,三角形ADB是直角三角形,且EM,DM分别是它们斜边上的中线,证明∠EMD=2∠DAC=60°,从而可得三角形DME是边长为2的等边三角形可得到问题答案.
【解析】
∵在△ABC中,AD⊥BC,垂足为点D,BE⊥AC,垂足为点E,
∴△ABE,△ADB是直角三角形,
∴EM,DM分别是它们斜边上的中线,
∴EM=DM=AB,
∵ME=
1
2
AB=MA,
∴∠MAE=∠MEA,
∴∠BME=2∠MAE,
同理,MD=
1
2
AB=MA,
∴∠MAD=∠MDA,
∴∠BMD=2∠MAD,
∴∠EMD=∠BME-∠BMD=2∠MAE-2∠MAD=2∠DAC=60°,
所以△DEM是边长为2的正三角形,所以S△DEM=.
故选B.