满分5 > 初中数学试题 >

在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点...

在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后恰好经过B,C两点.
(1)求直线BC及抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;
(3)连接CD,求∠OCA与∠OCD两角和的度数.

manfen5.com 满分网
(1)依题意设直线BC的解析式为y=kx+3,把B点坐标代入解析式求出直线BC的表达式.然后又已知抛物线y=x2+bx+c过点B,C,代入求出解析式. (2)由y=x2-4x+3求出点D,A的坐标.得出三角形OBC是等腰直角三角形求出∠OBC,CB的值.过A点作AE⊥BC于点E,求出BE,CE的值.证明△AEC∽△AFP求出PF可得点P在抛物线的对称轴,求出点P的坐标. (3)本题要靠辅助线的帮助.作点A(1,0)关于y轴的对称点A',则A'(-1,0),求出A'C=AC,由勾股定理可得CD,A'D的值.得出△A'DC是等腰三角形后可推出∠OCA+∠OCD=45度. 【解析】 (1)∵y=kx沿y轴向上平移3个单位长度后经过y轴上的点C, ∴C(0,3). 设直线BC的解析式为y=kx+3. ∵B(3,0)在直线BC上, ∴3k+3=0. 解得k=-1. ∴直线BC的解析式为y=-x+3.(1分) ∵抛物线y=x2+bx+c过点B,C, ∴ 解得, ∴抛物线的解析式为y=x2-4x+3.(2分) (2)由y=x2-4x+3. 可得D(2,-1),A(1,0). ∴OB=3,OC=3,OA=1,AB=2. 可得△OBC是等腰直角三角形, ∴∠OBC=45°,CB=3. 如图1,设抛物线对称轴与x轴交于点F, ∴AF=AB=1. 过点A作AE⊥BC于点E. ∴∠AEB=90度. 可得BE=AE=,CE=2. 在△AEC与△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF, ∴△AEC∽△AFP. ∴,. 解得PF=2.∵点P在抛物线的对称轴上, ∴点P的坐标为(2,2)或(2,-2).(5分) (3)解法一: 如图2,作点A(1,0)关于y轴的对称点A',则A'(-1,0). 连接A'C,A'D, 可得A'C=AC=,∠OCA'=∠OCA. 由勾股定理可得CD2=20,A'D2=10. 又∵A'C2=10, ∴A'D2+A'C2=CD2. ∴△A'DC是等腰直角三角形,∠CA'D=90°, ∴∠DCA'=45度. ∴∠OCA'+∠OCD=45度. ∴∠OCA+∠OCD=45度. 即∠OCA与∠OCD两角和的度数为45度.(7分) 解法二: 如图3,连接BD. 同解法一可得CD=,AC=. 在Rt△DBF中,∠DFB=90°,BF=DF=1, ∴DB=. 在△CBD和△COA中,,,. ∴. ∴△CBD∽△COA. ∴∠BCD=∠OCA. ∵∠OCB=45°, ∴∠OCA+∠OCD=45度. 即∠OCA与∠OCD两角和的度数为45度.(9分)
复制答案
考点分析:
相关试题推荐
在Rt△ABC中,∠ACB=90°,∠A=30°,BC=manfen5.com 满分网.动点O在AC上,以点O为圆心,OA长为半径的⊙O分别交AB、AC于点D、E,连接CD.
(1)如图1,当直线CD与⊙O相切时,请你判断线段CD与AD的数量关系,并证明你的结论;
(2)如图2,当∠ACD=15°时,求AD的长.
manfen5.com 满分网
查看答案
随着梅雨季节的临近,雨伞成为热销品.某景区与某制伞厂签订2万把雨伞的订购合同.合同规定:每把雨伞的出厂价为13元.景区要求厂方10天内完成生产任务,如果每延误1天厂方须赔付合同总价的1%给景区.由于急需,景区也特别承诺,如果每提前一天完成,每把雨伞的出厂价可提高0.1元.
(1)如果制伞厂确保在第10天完成生产任务,平均每天应生产雨伞______把;
(2)生产2天后,制伞厂又从其它部门抽调了10名工人参加雨伞生产,同时,通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该厂原计划安排多少名工人生产雨伞?
(3)已知每位工人每天平均工资为60元,每把雨伞的材料费用为8.2元.如果制伞厂按照(2)中的生产方式履行合同,将获得毛利润多少元?(毛利润=雨伞的销售价-雨伞的材料费-工人工资)
查看答案
如图:在Rt△ABC中,∠ACB=90°,sin∠BAC=manfen5.com 满分网.以斜边AB为x轴建立直角坐标系上,点C(1,4)在反比例函数y=manfen5.com 满分网的图象上.
(1)求k的值和边AC的长;
(2)求点B的坐标.

manfen5.com 满分网 查看答案
有3张形状材质相同的不透明卡片,正面分别写有1、2、-3,三个数字.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字作为一次函数y=kx+b中k的值;第二次从余下的两张卡片中再随机抽取一张,上面标有的数字作为b的值.
①k的值为正数的概率=______
②用画树状图或列表法求所得到的一次函数y=kx+b的图象经过第一、三、四象限的概率.
查看答案
“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:
(1)这次抽查的家长总人数为______
(2)请补全条形统计图和扇形统计图;
(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是______
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.